BackgroundLenvatinib is an oral inhibitor of multiple receptor tyrosine kinases (RTKs) targeting vascular endothelial growth factor receptor (VEGFR1-3), fibroblast growth factor receptor (FGFR1-4), platelet growth factor receptor α (PDGFR α), RET and KIT. Antiangiogenesis activity of lenvatinib in VEGF- and FGF-driven angiogenesis models in both in vitro and in vivo was determined. Roles of tumor vasculature (microvessel density (MVD) and pericyte coverage) as biomarkers for lenvatinib were also examined in this study.MethodWe evaluated antiangiogenesis activity of lenvatinib against VEGF- and FGF-driven proliferation and tube formation of HUVECs in vitro. Effects of lenvatinib on in vivo angiogenesis, which was enhanced by overexpressed VEGF or FGF in human pancreatic cancer KP-1 cells, were examined in the mouse dorsal air sac assay. We determined antitumor activity of lenvatinib in a broad panel of human tumor xenograft models to test if vascular score, which consisted of high MVD and low pericyte coverage, was associated with sensitivity to lenvatinib treatment. Vascular score was also analyzed using human tumor specimens with 18 different types of human primary tumors.ResultLenvatinib inhibited VEGF- and FGF-driven proliferation and tube formation of HUVECs in vitro. In vivo angiogenesis induced by overexpressed VEGF (KP-1/VEGF transfectants) or FGF (KP-1/FGF transfectants) was significantly suppressed with oral treatments of lenvatinib. Lenvatinib showed significant antitumor activity in KP-1/VEGF and five 5 of 7 different types of human tumor xenograft models at between 1 to 100 mg/kg. We divided 19 human tumor xenograft models into lenvatinib-sensitive (tumor-shrinkage) and relatively resistant (slow-growth) subgroups based on sensitivity to lenvatinib treatments at 100 mg/kg. IHC analysis showed that vascular score was significantly higher in sensitive subgroup than relatively resistant subgroup (p < 0.0004). Among 18 types of human primary tumors, kidney cancer had the highest MVD, while liver cancer had the lowest pericyte coverage, and cancers in Kidney and Stomach had highest vascular score.ConclusionThese results indicated that Lenvatinib inhibited VEGF- and FGF-driven angiogenesis and showed a broad spectrum of antitumor activity with a wide therapeutic window. MVD and pericyte-coverage of tumor vasculature might be biomarkers and suggest cases that would respond for lenvatinib therapy.
c‐Met is the cellular receptor for hepatocyte growth factor (HGF) and is known to be dysregulated in various types of human cancers. Activation of the HGF/c‐Met pathway causes tumor progression, invasion, and metastasis. Vascular endothelial growth factor (VEGF) is also known as a key molecule in tumor progression through the induction of tumor angiogenesis. Because of their key roles in tumor progression, these pathways provide attractive targets for therapeutic intervention. We have generated a novel, orally active, small molecule compound, E7050, which inhibits both c‐Met and vascular endothelial growth factor receptor (VEGFR)‐2. In vitro studies indicate that E7050 potently inhibits phosphorylation of both c‐Met and VEGFR‐2. E7050 also potently represses the growth of both c‐met amplified tumor cells and endothelial cells stimulated with either HGF or VEGF. In vivo studies using E7050 showed inhibition of the phosphorylation of c‐Met and VEGFR‐2 in tumors, and strong inhibition of tumor growth and tumor angiogenesis in xenograft models. Treatment of some tumor lines containing c‐met amplifications with high doses of E7050 (50–200 mg/kg) induced tumor regression and disappearance. In a peritoneal dissemination model, E7050 showed an antitumor effect against peritoneal tumors as well as a significant prolongation of lifespan in treated mice. Our results indicate that E7050 is a potent inhibitor of c‐Met and VEGFR‐2 and has therapeutic potential for the treatment of cancer. (Cancer Sci 2009)
The combination of lenvatinib, a multiple receptor tyrosine kinase inhibitor, plus everolimus, a mammalian target of rapamycin (mTOR) inhibitor, significantly improved clinical outcomes versus everolimus monotherapy in a phase II clinical study of metastatic renal cell carcinoma (RCC). We investigated potential mechanisms underlying the antitumor activity of the combination treatment in preclinical RCC models. Lenvatinib plus everolimus showed greater antitumor activity than either monotherapy in three human RCC xenograft mouse models (A‐498, Caki‐1, and Caki‐2). In particular, the combination led to tumor regression in the A‐498 and Caki‐1 models. In the A‐498 model, everolimus showed antiproliferative activity, whereas lenvatinib showed anti‐angiogenic effects. The anti‐angiogenic activity was potentiated by the lenvatinib plus everolimus combination in Caki‐1 xenografts, in which fibroblast growth factor (FGF)‐driven angiogenesis may contribute to tumor growth. The combination showed mostly additive activity in vascular endothelial growth factor (VEGF)‐activated, and synergistic activity against FGF‐activated endothelial cells, in cell proliferation and tube formation assays, as well as strongly suppressed mTOR‐S6K‐S6 signaling. Enhanced antitumor activities of the combination versus each monotherapy were also observed in mice bearing human pancreatic KP‐1 xenografts overexpressing VEGF or FGF. Our results indicated that simultaneous targeting of tumor cell growth and angiogenesis by lenvatinib plus everolimus resulted in enhanced antitumor activity. The enhanced inhibition of both VEGF and FGF signaling pathways by the combination underlies its superior anti‐angiogenic activity in human RCC xenograft models.
-Possible effects of multi-wall carbon nanotubes (MWCNTs) on immune and inflammatory responses were examined in mice. Female ICR mice were given a single intraperitoneal administration (2 mg/kg body weight) of either MWCNTs, carbon black (CB), or crocidolite (blue asbestos) and controls received a vehicle of 2% sodium carboxymethyl cellulose (CMC Na). In the peritoneal cavity of MWCNT-administered mice, the liver had changed to a rounded shape and fibrous adhesions were seen on internal organs. Peritoneal cells overexpressed mRNA for genes of T helper (Th)2 cytokines (interleukin , Th17 cytokine (IL-17), pro-inflammatory cytokines/chemokines (IL-1β, IL-33, tumor necrosis factor α, and monocyte chemotactic protein-1), and myeloid differentiation factor 88 for at least 2 weeks after the administration of MWCNTs, while those of Th1 cytokine genes (IL-2 and interferon γ) were overexpressed several weeks later and expression levels remained high up to 20 weeks. In MWCNT-treated mice, the numbers of leukocytes, monocytes, and granulocytes in the peripheral blood and the expression of the leukocyte adhesion molecules, cluster of differentiation (CD)49d and CD54, on granulocytes were increased 1 week after administration and remained high up to week 20. Production of ovalbumin-specific IgM and IgG 1 was enhanced by MWCNTs. These changes were not observed after CB or crocidolite administration. Thus, this study showed that MWCNTs exhibited sustained stimulating effects on immune and inflammatory responses, unlike the other mineral fibers with structural similarities.
The Wnt/β-catenin signaling pathway plays crucial roles in embryonic development and the development of multiple types of cancer, and its aberrant activation provides cancer cells with escape mechanisms from immune checkpoint inhibitors. E7386, an orally active selective inhibitor of the interaction between β-catenin and CREB binding protein, which is part of the Wnt/β-catenin signaling pathway, disrupts the Wnt/β-catenin signaling pathway in HEK293 and adenomatous polyposis coli (APC)-mutated human gastric cancer ECC10 cells. It also inhibited tumor growth in an ECC10 xenograft model and suppressed polyp formation in the intestinal tract of ApcMin/+ mice, in which mutation of Apc activates the Wnt/β-catenin signaling pathway. E7386 demonstrated antitumor activity against mouse mammary tumors developed in mouse mammary tumor virus (MMTV)-Wnt1 transgenic mice. Gene expression profiling using RNA sequencing data of MMTV-Wnt1 tumor tissue from mice treated with E7386 showed that E7386 downregulated genes in the hypoxia signaling pathway and immune responses related to the CCL2, and IHC analysis showed that E7386 induced infiltration of CD8+ cells into tumor tissues. Furthermore, E7386 showed synergistic antitumor activity against MMTV-Wnt1 tumor in combination with anti-PD-1 antibody. In conclusion, E7386 demonstrates clear antitumor activity via modulation of the Wnt/β-catenin signaling pathway and alteration of the tumor and immune microenvironments, and its antitumor activity can be enhanced in combination with anti-PD-1 antibody. Significance: These findings demonstrate that the novel anticancer agent, E7386, modulates Wnt/β-catenin signaling, altering the tumor immune microenvironment and exhibiting synergistic antitumor activity in combination with anti-PD-1 antibody.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.