To elucidate the possibility and availability of thermal recycling of waste plastic resin from a basic and microscopic viewpoint, a series of abrupt heating processes of a spherical micro plastic particle having a diameter of about 200 µm is observed, when it is abruptly exposed to hot oxidizing combustion gas. Three ingenious devices are introduced and two typical plastic resins of polyethylene terephthalate and polyethylene are used. In this paper the dependency of internal and external appearances of residual plastic embers on the heating time and the ingredients of plastic resins is optically analyzed, along with appearances of internal micro bubbling, multiple micro explosions and jets, and micro diffusion flames during abrupt heating. Based on temporal variations of the surface area of a micro plastic particle, the apparent burning rate constant is also evaluated and compared with those of well-known volatile liquid fuels.
From a fundamental and microscopic viewpoint to elucidate the possibility and availability of thermal recycling of wasted plastic resin, a series of heating processes of melting, thermal decomposition and burning of a spherical micro plastic resin particle having a diameter of about 200 μm are observed, when it is suddenly exposed to hot oxidizing combustion gas. Three ingenious devices are introduced; the first is a high-speed microscopic direct and schlieren system, the second is a pre-mixed mini-burner for abrupt heating, which is equipped with a pair of spark gaps at its exit and is discharged synchronously with the starting signal of high-speed camera, and the third is a single mini-puff generator, which enables to extinguish instantly all flames around the micro particle at an arbitrary assigned time after the spark ignition. Polyethylene terephthalate and polyethylene are used as two typical plastic resins. In this paper the dependency of internal and external appearances of residual plastic embers on the heating time and the initial plastic composition is optically analyzed, along with appearances of internal micro bubbling, micro jets and micro diffusion flames during abrupt heating. Based on temporal variations of the surface area of a micro plastic particle, the burning rate constant is also evaluated and compared with well-known volatile liquid fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.