We resequenced 876 short fragments in a sample of 96 individuals of Arabidopsis thaliana that included stock center accessions as well as a hierarchical sample from natural populations. Although A. thaliana is a selfing weed, the pattern of polymorphism in general agrees with what is expected for a widely distributed, sexually reproducing species. Linkage disequilibrium decays rapidly, within 50 kb. Variation is shared worldwide, although population structure and isolation by distance are evident. The data fail to fit standard neutral models in several ways. There is a genome-wide excess of rare alleles, at least partially due to selection. There is too much variation between genomic regions in the level of polymorphism. The local level of polymorphism is negatively correlated with gene density and positively correlated with segmental duplications. Because the data do not fit theoretical null distributions, attempts to infer natural selection from polymorphism data will require genome-wide surveys of polymorphism in order to identify anomalous regions. Despite this, our data support the utility of A. thaliana as a model for evolutionary functional genomics.
The iap gene in Escherichia coli is responsible for the isozyme conversion of alkaline phosphatase. We analyzed the 1,664-nucleotide sequence of a chromosomal DNA segment that contained the iap gene and its flanking regions. The predicted iap product contained 345 amino acids with an estimated molecular weight of 37,919. The 24-amino-acid sequence at the amino terminus showed features characteristic of a signal peptide. Two proteins of different sizes were identified by the maxicell method, one corresponding to the lap protein and the other corresponding to the processed product without the signal peptide. Neither the isozyme-converting activity nor labeled Iap proteins were detected in the osmotic-shock fluid of cells carrying a multicopy iap plasmid. The Iap protein seems to be associated with the membrane.
Recently, the zinc metallo-hydrolase family of the L L-lactamase fold has grown quite rapidly, accompanied by the accumulation of sequence and structure data. The variety of the biological functions of the family is higher than expected. In addition, the members often have mosaic structures with additional domains. The family includes class B L L-lactamase, glyoxalase II, arylsulfatase, flavoprotein, cyclase/dehydrase, an mRNA 3P P-processing protein, a DNA cross-link repair enzyme, a DNA uptake-related protein, an alkylphosphonate uptakerelated protein, CMP-N-acetylneuraminate hydroxylase, the romA gene product, alkylsulfatase, and insecticide hydrolases. In this minireview, the functional and structural varieties of the growing protein family are described. ß
Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems are well-known acquired immunity systems that are widespread in archaea and bacteria. The RNA-guided nucleases from CRISPR-Cas systems are currently regarded as the most reliable tools for genome editing and engineering. The first hint of their existence came in 1987, when an unusual repetitive DNA sequence, which subsequently was defined as a CRISPR, was discovered in the genome during an analysis of genes involved in phosphate metabolism. Similar sequence patterns were then reported in a range of other bacteria as well as in halophilic archaea, suggesting an important role for such evolutionarily conserved clusters of repeated sequences. A critical step toward functional characterization of the CRISPR-Cas systems was the recognition of a link between CRISPRs and the associated Cas proteins, which were initially hypothesized to be involved in DNA repair in hyperthermophilic archaea. Comparative genomics, structural biology, and advanced biochemistry could then work hand in hand, not only culminating in the explosion of genome editing tools based on CRISPR-Cas9 and other class II CRISPR-Cas systems but also providing insights into the origin and evolution of this system from mobile genetic elements denoted casposons. To celebrate the 30th anniversary of the discovery of CRISPR, this minireview briefly discusses the fascinating history of CRISPR-Cas systems, from the original observation of an enigmatic sequence in to genome editing in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.