Cryptochrome flavoproteins, which share sequence homology with light-dependent DNA repair photolyases, function as photoreceptors in plants and circadian clock components in animals. Here, we coupled sequencing of an Arabidopsis cryptochrome gene with phylogenetic, structural, and functional analyses to identify a new cryptochrome class (cryptochrome DASH) in bacteria and plants, suggesting that cryptochromes evolved before the divergence of eukaryotes and prokaryotes. The cryptochrome crystallographic structure, reported here for Synechocystis cryptochrome DASH, reveals commonalities with photolyases in DNA binding and redox-dependent function, despite distinct active-site and interaction surface features. Whole genome transcriptional profiling together with experimental confirmation of DNA binding indicated that Synechocystis cryptochrome DASH functions as a transcriptional repressor.
Recently, the zinc metallo-hydrolase family of the L L-lactamase fold has grown quite rapidly, accompanied by the accumulation of sequence and structure data. The variety of the biological functions of the family is higher than expected. In addition, the members often have mosaic structures with additional domains. The family includes class B L L-lactamase, glyoxalase II, arylsulfatase, flavoprotein, cyclase/dehydrase, an mRNA 3P P-processing protein, a DNA cross-link repair enzyme, a DNA uptake-related protein, an alkylphosphonate uptakerelated protein, CMP-N-acetylneuraminate hydroxylase, the romA gene product, alkylsulfatase, and insecticide hydrolases. In this minireview, the functional and structural varieties of the growing protein family are described. ß
Background: Cryptochromes (CRY), members of the DNA photolyase/cryptochrome protein family, regulate the circadian clock in animals and plants. Two types of animal CRYs are known, mammalian CRY and Drosophila CRY. Both CRYs participate in the regulation of circadian rhythm, but they have different light dependencies for their reactions and have different effects on the negative feedback loop which generates a circadian oscillation of gene expression. Mammalian CRYs act as a potent inhibitor of transcriptional activator whose reactions do not depend on light, but Drosophila CRY functions as a light-dependent suppressor of transcriptional inhibitor.
A new type of cryptochrome, CRY-DASH, has been recently identified. The CRY-DASH proteins constitute the fifth subfamily of the photolyase/cryptochrome family. CRY-DASHs have been identified from Synechocystis sp. PCC 6803, Vibrio cholerae , and Arabidopsis thaliana . The Synechocystis CRY-DASH was the first cryptochrome identified from bacteria, and its biochemical features and tertiary structure have been extensively investigated. To determine how broadly the subfamily is distributed within living organisms, we searched for new CRY-DASH candidates within several databases. We found five sequences as new CRY-DASH candidates, which are derived from four marine bacteria and Neurospora crassa . We also found many CRY-DASH candidates from the EST databases, which included sequences from fish and amphibians. We cloned and sequenced the cDNAs of the zebrafish and Xenopus laevis candidates, based on the EST sequences. The proteins encoded by the two genes were purified and characterized. Both proteins contained folate and flavin cofactors, and have a weak DNA photolyase activity. A phylogenetic analysis revealed that the seven candidates actually belong to the new type of cryptochrome subfamily. This is the first report of the CRY-DASH members from vertebrates and fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.