Purpose
To evaluate the efficacy of silicone sheet as a new type of barrier for preventing adhesion reformation following hysteroscopic adhesiolysis of intrauterine adhesions (IUAs).
Methods
Hysteroscopic adhesiolysis was performed for 36 patients with IUAs. The adhesion reformation rate was retrospectively compared between 26 patients treated with silicone sheet (group 1) and 10 patients treated with an intrauterine device wrapped in oxidized regenerated cellulose as a barrier (group 2). For patients in group 1, a 1‐mm‐thick silicone sheet was cut to fit the size and shape of the individual uterine cavity as a personalized barrier.
Results
The size and shape of each silicone sheet used for patients in group 1 differed significantly. The adhesion reformation rate was significantly lower in group 1 (4/26, 15.4%) than in group 2 (4/10, 40.0%; P = 0.03), although the pregnancy rate (14/20, 70.0% vs. 5/10, 50.0%; P = 0.28) and miscarriage rate (2/14, 14.3% vs. 1/5, 20.0%; P = 0.72) were not significantly different.
Conclusion
Use of silicone sheets appears to be effective for preventing adhesion reformation following hysteroscopic adhesiolysis of IUAs. This is the first study to investigate the efficacy of silicone sheet used as a personalized barrier for preventing IUAs.
Matrix metalloproteinases (MMP) are capable of degrading a variety of extracellular matrix (ECM) proteins and are also involved in the processing of a number of bioactive molecules. Our findings indicate that the functions of MMP in the ovary and uterus are organ-specific and time-dependently vary during the reproductive cycle. Prolactin induces structural luteolysis indicated by loss of luteal weight, protein and DNA within 36 h after pretreatment with ergot alkaloid. MMP activation appears crucial for the selective depletion of protein during luteal involution, which entails loss of ECM accompanied by apoptosis. During GnRHagonist-induced luteolysis, this response was also associated with marked increases in MMP-2, which degraded collagen type IV, and MT1-MMP, which in addition to activating MMP-2 also degrades collagen type I, III and V. We also found that the level of MT1-MMP and MMP-2 expression in the human CL is greater during the late luteal phase than during either the early mid luteal phases or during gestation, respectively. That dehydroepiandrosterone (DHEA) treatment caused the formation of cysts from antral follicles in the ovaries of immature rats while depressing MMP-2 collagenolytic activity and enhancing lysyl oxidase expression highlights the importance of collagen degradation in the process of ovulation and suggests that changes in the activities of these enzymes play a key role in ovarian cystogenesis in polycystic ovary syndrome patients. Furthermore, immunohistochemical analyses showed that MT1-MMP and FasL co-localize with TdT-mediated dUTP-biotin nick endlabeling (TUNEL)-positive apoptotic granulosa cells in rats treated with DHEA, that the Fas/FasL/Caspase-8 (death receptordependent) pathway is pivotal for follicular atresia and that increased levels of MT1-MMP likely play an important role in tissue remodeling during follicular atresia. After parturition, the uterus undergoes involution, a conspicuous feature characterized by a rapid reduction in the collagen content mediated by degradation of extracellular collagen bundles. Our findings strongly suggest that MT1-MMP, MMP-2 and MMP-9 are each time-dependently regulated and play important roles in tissue remodeling during postpartum uterine involution. (Reprod Med Biol 2006; 5: 235-243)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.