Our results are at variance with those of earlier studies and suggest that excessive androgen exposure in women of reproductive age may not be a factor in the pathogenesis of PCOS.
Introduction The prevalence of transsexualism is thought to differ among socio-geographic backgrounds, and little is known about its prevalence in Japan. Polycystic ovary syndrome (PCOS), which is known to be associated with insulin resistance and metabolic syndrome, is often seen in female-to-male (FTM) transsexual patients. Consequently, detection of PCOS is an important part of health care for these individuals. Aim The purpose of this study was to assess the prevalence of transsexuality in Japan, as well as the incidences of PCOS and insulin resistance among Japanese FTM transsexual patients. Methods One hundred four male-to-female (MTF) and 238 FTM Japanese transsexual patients were studied. Medical histories, including histories of menstrual cycling and hormone treatment, were taken. To exclude other diseases, such as congenital adrenal hyperplasia and hormone-secreting tumors, thorough medical assessments, including transvaginal or transrectal ultrasonography and measurement of serum hormone levels and insulin resistance indexes, were performed. Main Outcome Measures The diagnosis of PCOS was based on the Rotterdam 2003 criteria. Results Based on demographic statistics, the prevalences of MTF and FTM transsexuality are about 3.97 and 8.20 per 100,000 people, respectively, making the MTF-to-FTM ratio about 1:2. Of the FTM transsexual patients studied, 128 had not taken hormones before their initial assessment (untreated group); the remaining 50 self-administered androgen. Among the untreated group, 32.0% were diagnosed with PCOS, 30.1% were insulin-resistant, and 31.1% showed hypoadiponectinemia. Conclusions The sex ratio among Japanese transsexuals is different than among Caucasians. PCOS and insulin resistance are common findings in FTM transsexual patients at initial presentation.
Gonadotropin-releasing hormone (GnRH) and its agonist analog (GnRHa) are well known to have luteolytic effects. We previously reported that prolactin (PRL) stimulated matrix metalloproteinase (MMP)-2 activity to degrade collagen type IV as a mechanism of structural luteolysis. The effects of GnRHa treatment on developed corpora lutea are unknown. In this study we assessed the effect of GnRH on MMP expression and induction of structural involution of developed corpora lutea of superovulated rats using GnRHa.Pregnant mare serum gonadotropin-human chorionic gonadotropin (hCG)-synchronized ovulation and luteinization were induced in immature female rats, followed by daily treatment with GnRHa from 5 days after hCG treatment. GnRHa-induced involution of corpora lutea was evident 3 days after the treatment, as shown by their markedly smaller size (60% of the control weight). Nine days after hCG injection, serum progesterone and 20 -dihydroprogesterone concentrations were as low as those associated with structural luteolysis. These findings revealed that GnRHa has the ability to induce structural luteolysis in superovulated rats in the same way that PRL does. To gain information on mechanisms of luteal involution induced by GnRHa, we performed gelatin zymography. This showed a significant increase in the active form of MMP-2 in the luteal extract of GnRHatreated rats (more than twofold that of the control). Activation of pro-MMP-2 by membrane type-MMP (MT-MMP) is reported to be a rate-limiting step for catalytic function. Another function of MT-MMP is to degrade collagen types I and III. The plasma membrane fraction of corpora lutea of GnRHa-treated rats activated pro-MMP-2 of fetal calf serum, resulting in a marked shift of the 68-kDa band to the 62-kDa band in the zymogram. A Northern hybridization study also revealed simultaneous significant increases in expression of MMP-2 mRNA and MT1-MMP mRNA in corpora lutea of GnRHa-treated rats (more than threefold the control level).In summary, hormonal and histological features of corpora lutea of GnRHa-treated superovulated rats correspond to those of structural luteolysis. GnRHa stimulated the expression of MMP-2 and MT1-MMP in developed corpora lutea associated with involution. These findings support the conclusion that MMP-2, activated by MT1-MMP, and MT1-MMP itself, remodel the extracellular matrix during structural luteolysis induced by GnRHa.
There are two stages of luteal regression. The first stage is functional regression that is characterized by a decreased production of progesterone secretion; the second stage of structural involution is referred to as a structural luteolysis. In rodents, prolactin has a biphasic action on the corpus luteum. It is luteotrophic, but when exposed to functionally regressed corpora lutea it causes luteolysis. The objective of the present studies was to examine mechanisms of prolactin action in structural luteolysis, whether apoptosis is involved in this process, and to examine the possible association of cell proliferation signals as mediators of structural luteolysis. Prolactin-induced structural luteolysis was associated with apoptosis verified by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL). Apoptotic cells made up about 3% of the cells 24 hours after the first injection of prolactin, a level that remained constant at all stages of structural luteolysis. Total ovarian weight and DNA content were decreased about 50% in 72 hours after induction of structural luteolysis by prolactin, The finding of about 3% of cells in apoptosis indicates apoptosis is a rapid process. Proliferating cell nuclear antigens (PCNA) of luteal cells were significantly decreased during functional luteal regression, but were conversely increased in structural luteolysis as shown by western blotting and immunohistochemistry. In general PCNA expression is reported to be decreased during structural involution, and there are no reports that have linked excess expression of PCNA with apoptosis and structural luteolysis. We speculate that an excessive increase in expression of PCNA which signals activation of cell proliferation creates a disorder in the signals involved with DNA synthesis. This disorder results in mitotic catastrophe and in the induction of apoptosis. Therefore the disorder of cell cycle signals in luteal cells are associated with prolactin induced apoptosis in structural luteolysis.
Paclitaxel is one of the most commonly used anti-neoplastic drugs for the treatment of solid tumors. Unfortunately, its use is often associated with dose-limiting painful peripheral neuropathy and subsequent neuropathic pain that is resistant to standard analgesics. However, there are few clinically available drugs or drug classes for the treatment of paclitaxel-induced neuropathy due to a lack of information regarding the mechanisms responsible for it. In this study, we examined the involvement of L-serine in paclitaxel-induced hyperalgesia/allodynia and decrease in sensory nerve conduction velocity (SNCV). We used a preclinical rat model of paclitaxel-induced painful
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.