Phase relations of the olivine‐wadsleyite transition in the system (Mg,Fe)2SiO4 have been determined at 1600 and 1900 K using the quench method in a Kawai‐type high‐pressure apparatus. Pressure was determined at a precision better than 0.2 GPa using in situ X‐ray diffraction with MgO as a pressure standard. The transition pressures of the end‐member Mg2SiO4 are estimated to be 14.2 and 15.4 GPa at 1600 and 1900 K, respectively. Partition coefficients for Fe and Mg between olivine and wadsleyite are 0.51 at 1600 K and 0.61 at 1900 K. By comparing the depth of the discontinuity with the transition pressure, the temperature at 410 km depth is estimated to be 1760 ± 45 K for a pyrolitic upper mantle. The mantle potential temperature is estimated to be in the range 1550–1650 K. The temperature at the bottom of the upper mantle is estimated to be 1880 ± 50 K. The thickness of the olivine‐wadsleyite transition in a pyrolitic mantle is determined to be between 7 and 13 km for a pyrolitic mantle, depending on the efficiency of vertical heat transfer. Regions of rapid vertical flow (e.g., convection limbs), in which thermal diffusion is negligible, should have a larger transition interval than stagnant regions, where thermal diffusion is effective. This is in apparent contradiction to short‐period seismic wave observations that indicate a maximum thickness of <5 km. An upper mantle in the region of the 410 km discontinuity with about 40% olivine and an Mg# of at least 89 can possibly explain both the transition thickness and velocity perturbation at the 410 km discontinuity.
Spectral spin diffusion in 13C NMR of double 13C-labelled sodium acetate trihydrate (SAC), and in 31P NMR of zinc(I1) bis(0,O'-diethyldithiophosphate) (ZNP) has been studied under magic-angle spinning conditions. Spin-diffusion time constants, qD, were determined from the intensities of the spinning sidebands in experiments using rotation-synchronized DANTE pulse sequences, at several different spinning frequencies. The theory of Suter and Ernst, developed for spectral spin diffusion in single crystals, was extended to the case of polycrystalline samples rotating under magic-angle spinning conditions. We considered two mechanisms for the spin diffusion, i.e. dipolar interaction and J-coupling. The spin-diffusion time constants, qT), were related to the zero-quantum lineshape functions in a manner similar to the theory of Suter and Ernst. The zero-quantum lineshape functions were estimated from the observed single-quantum lineshape functions. In the present studies the dependence of the experimental values for T,, on the rotational frequency v, are in good agreement with those calculated from the theory based on the dipolar interaction mechanism. The values of T,, for SAC showed a deep minimum at Am z 2m,, and a shallow minimum at Am z 3m,. This phenomenon is rotational relaxation resonance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.