Phase relations of the olivine‐wadsleyite transition in the system (Mg,Fe)2SiO4 have been determined at 1600 and 1900 K using the quench method in a Kawai‐type high‐pressure apparatus. Pressure was determined at a precision better than 0.2 GPa using in situ X‐ray diffraction with MgO as a pressure standard. The transition pressures of the end‐member Mg2SiO4 are estimated to be 14.2 and 15.4 GPa at 1600 and 1900 K, respectively. Partition coefficients for Fe and Mg between olivine and wadsleyite are 0.51 at 1600 K and 0.61 at 1900 K. By comparing the depth of the discontinuity with the transition pressure, the temperature at 410 km depth is estimated to be 1760 ± 45 K for a pyrolitic upper mantle. The mantle potential temperature is estimated to be in the range 1550–1650 K. The temperature at the bottom of the upper mantle is estimated to be 1880 ± 50 K. The thickness of the olivine‐wadsleyite transition in a pyrolitic mantle is determined to be between 7 and 13 km for a pyrolitic mantle, depending on the efficiency of vertical heat transfer. Regions of rapid vertical flow (e.g., convection limbs), in which thermal diffusion is negligible, should have a larger transition interval than stagnant regions, where thermal diffusion is effective. This is in apparent contradiction to short‐period seismic wave observations that indicate a maximum thickness of <5 km. An upper mantle in the region of the 410 km discontinuity with about 40% olivine and an Mg# of at least 89 can possibly explain both the transition thickness and velocity perturbation at the 410 km discontinuity.
During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5-893.2 m Measured Depth (MD). Continuous sampling and meso-to microscale characterization of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites, and mylonites, terminating 200-400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz+feldspar, most markedly below ~ 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.