We develop a disposable and cost-effective non-enzymatic glucose sensor consisting of an extended gate field effect transistor (EG-FET) to obtain effortless operation. The sensor is fabricated by printing, gold (Au) precursor ink and copper oxide nanoparticles (CuO NPs) inks using a commercial inkjet printer on a flexible Polyimide (PI) substrate. First, sensing properties are tested electrochemically. The sensor shows a sensitivity of 728.5 μA cm−2 mM−1 and a detection limit of 0.01 mM with a correlation coefficient (R) of 0.998. The observed linear dynamic range is from 0.5 to 7 mM. After that, the sensing electrode is adapted to the EG-FET. Two linear response ranges extend from 0.1 to 4 mM of a low concentration range of glucose with a sensitivity of 1295 μA cm−2 mM−1, and from 5 to 30 mM of a high concentration range of glucose with a sensitivity of 164 μA cm−2 mM−1 are observed. The EG-FET approach can enhance the detection sensitivities using amplification for a low concentration glucose range and extending a detection range for high concentration glucose. The presented work demonstrates that simply printed CuO NPs sensors can be used at low cost for disposable wide-range glucose detection devices. Article Highlights A non-enzymatic printed glucose sensor using an inkjet printer has been successfully developed. CuO nanoparticles ink is printed on thin gold electrodes on Polyimide film. We evaluate the glucose detection of extended-gate field-effect transistor (EG-FET) sensors. The sensitivity is estimated to be 1295 μA cm−2 mM−1. The EG-FET structure has the merit of a simple operation and cost-effective personal health care devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.