The photoelectrochemical properties of porous BiVO4 thin-film electrodes on conducting glass for H2 production from water under visible light were investigated. BiVO4 films were prepared by the metal-organic decomposition method, and particles were 90-150 nm in diameter. Under visible-light irradiation, H2 and O2 evolved in a stoichiometric ratio (H2/O2 = 2) from an aqueous solution of Na2SO4 with an external bias. The photocurrent increased with addition of methanol. The band structure of BiVO4 was investigated by open-circuit potential, flat-band potential, X-ray photoelectron spectroscopy, and calculations based on density functional theory. The top of the valence-band potential of BiVO4 was shifted negatively compared to the potentials of the conventional oxide semiconductors without Bi. We surmise that hybridization between the O-2p and Bi-6s orbitals might contribute to the negative shift of the BiVO4 valence band. Treatment with an aqueous solution of AgNO3 improved the photocurrent of the BiVO4 electrode significantly. The maximum incident photon-to-current conversion efficiency at 420 nm was 44%. This value was the highest among mixed-oxide semiconductor electrodes under visible light irradiation. AgNO3 treatment also improved the stability of the photocurrent. The Ag+ ion in/on the BiVO4 catalyzed the intrinsic photogeneration of oxygen with the holes.
The nanocrystalline BiVO4 film electrode on conducting glass showed an excellent efficiency (IPCE = 29% at 420 nm) for the decomposition of water under visible light.
Superconductivity of nanosized Pb-island structures whose radius is 0.8 to 2.5 times their coherence length was studied under magnetic fields using low-temperature scanning tunneling microscopy and spectroscopy. Spatial profiles of superconductivity were obtained by conductance measurements at zero-bias voltage. Critical magnetic fields for vortex penetration and expulsion and for superconductivity breaking were measured for each island. The critical fields depending on the lateral size of the islands and existence of the minimum lateral size for vortex formation were observed.
Low-temperature ultrahigh vacuum frequency-modulation atomic force microscopy (AFM) was performed using a 1 MHz length-extension type of quartz resonator as a force sensor. Taking advantage of the high stiffness of the resonator, the AFM was operated with an oscillation amplitude smaller than 100 pm, which is favorable for high spatial resolution, without snapping an AFM tip onto a sample surface. Atomically resolved imaging of the adatom structure on the Si(111)-(7x7) surface was successfully obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.