1Recent discovery of both gapped and gapless topological phases in weakly correlated electron systems has introduced various relativistic particles and a number of exotic phenomena in condensed matter physics [1][2][3][4][5] . The Weyl fermion 6-8 is a prominent example of three dimensional (3D), gapless topological excitation, which has been experimentally identified in inversion symmetry breaking semimetals 4,5 . However, their realization in spontaneously time reversal symmetry (TRS) breaking magnetically ordered states of correlated materials has so far remained hypothetical 7, 9, 10 . Here, we report a set of experimental evidence for elusive magnetic Weyl fermions in Mn 3 Sn, a non-collinear antiferromagnet that exhibits a large anomalous Hall effect even at room temperature 11 . Detailed comparison between our angle resolved photoemission spectroscopy (ARPES) measurements and density functional theory (DFT) calculations reveals significant bandwidth renormalization and damping effects due to the strong correlation among Mn 3d electrons. Moreover, our transport measurements have unveiled strong evidence for the chiral anomaly of Weyl fermions, namely, the emergence of positive magnetoconductance only in the presence of parallel electric and magnetic fields. The magnetic Weyl fermions of Mn 3 Sn have a significant technological potential, since a weak field (∼ 10 mT) is adequate for controlling the distribution of Weyl points and the large fictitious field (∼ a few 100 T) in the momentum space. Our discovery thus lays the foundation for a new field of science and technology involving the magnetic Weyl excitations of strongly correlated electron systems.Traditionally, topological properties have been considered for the systems supporting gapped bulk excitations 1 . However, over the past few years three dimensional gapless systems such asWeyl and Dirac semimetals have been discovered, which combine two seemingly disjoint notions 2 of gapless bulk excitations and band topology [2][3][4][5] . In 3D inversion or TRS breaking systems, two nondegenerate energy bands can linearly touch at pairs of isolated points in the momentum (k) space, giving rise to the Weyl quasiparticles. The touching points or Weyl nodes act as the unit strength (anti) monopoles of underlying Berry curvature [4][5][6][7] , leading to the protected zero energy surface states also known as the Fermi-arcs 4,5,7 , and many exotic bulk properties such as large anomalous Hall effect (AHE) 12 , optical gyrotropy 13 , and chiral anomaly 6,[14][15][16][17][18][19] . Interestingly, the Weyl fermions can describe low energy excitations of both weakly and strongly correlated electron systems. In weakly correlated, inversion symmetry breaking materials, where the symmetry breaking is entirely caused by the crystal structure rather than the collective properties of electrons, the ARPES has provided evidence for long-lived bulk Weyl fermions and the surface Fermi arcs 4, 5 .On the other hand, the magnetic Weyl fermions have been predicted for several...
Regolith particles on the asteroid Itokawa were recovered by the Hayabusa mission. Their three-dimensional (3D) structure and other properties, revealed by x-ray microtomography, provide information on regolith formation. Modal abundances of minerals, bulk density (3.4 grams per cubic centimeter), and the 3D textures indicate that the particles represent a mixture of equilibrated and less-equilibrated LL chondrite materials. Evidence for melting was not seen on any of the particles. Some particles have rounded edges. Overall, the particles' size and shape are different from those seen in particles from the lunar regolith. These features suggest that meteoroid impacts on the asteroid surface primarily form much of the regolith particle, and that seismic-induced grain motion in the smooth terrain abrades them over time.
The major breakthroughs in the understanding of topological materials over the past decade were all triggered by the discovery of the Z 2 topological insulator (TI). In three dimensions (3D), the TI is classified as either "strong" or "weak" [1, 2], and experimental confirmations of the strong topological insulator (STI) rapidly followed the theoretical predictions [3][4][5]. In contrast, the weak topological insulator has so far eluded experimental verification, since the topological surface states emerge only on particular side surfaces which are typically undetectable in real 3D crystals [6][7][8][9][10]. Here we provide experimental evidence for the WTI state in a bismuth iodide, β-Bi4I4. Significantly, the crystal has naturally cleavable top and side planes both stacked via van-der-Waals forces, which have long been desirable for the experimental realization of the WTI state [11, 12]. As a definitive signature of it, we find quasi-1D Dirac TSS at the side-surface (100) while the top-surface (001) is topologically dark. Furthermore, a crystal transition from the β-to α-phase drives a topological phase transition from a nontrivial WTI to the trivial insulator around room temperature. This topological phase, viewed as quantum spin Hall (QSH) insulators stacked threedimensionally [13, 14], and excellent functionality with on/off switching will lay a foundation for new technology benefiting from highly directional spin-currents with large density protected against backscattering.The quasi-1D compounds α-Bi 4 I 4 and β-Bi 4 I 4 share similar crystal structures, formed from arrangements of Bi 4 I 4 chains within the space group C2/m (No. 12) [15]. They differ only in their stacking sequences along the c-axis as shown in Figs. 1a and 1b. The unit cell of the β-phase consists of a single Bi 4 I 4 block, while the α-phase has a different stacking of double Bi 4 I 4 blocks along the c axis, leading to a larger cell. Despite the small difference between these two crystal structures, distinct transport properties are obtained: the α-phase exhibits a typical semiconductor-like resistivity, whereas the β-phase, in contrast, presents conductive behavior (Fig. 1c). A crystal phase transition with a hysteresis is observed in the resistivity around room temperature while the temperature is slowly swept at a rate of 3 K/min (Fig. 1d). However, since the high temperature phase (the β-phase) can be pinned by quenching crystals (Method, Supplementary information), both phases can be equally investigated at low temperatures.
The van der Waals (vdW) materials with low dimensions have been extensively studied as a platform to generate exotic quantum properties [1][2][3][4][5][6]. Advancing this view, a great deal of attention is currently paid to topological quantum materials with vdW structures, which give new concepts in designing the functionality of materials. Here, we present the first experimental realization of a higher-order topological insulator by investigating a quasi-one-dimensional (quasi-1D) bismuth bromide Bi 4 Br 4 [7][8][9][10][11] built from a vdW stacking of quantum spin Hall insulators (QSHI) [12] with angle-resolved photoemission spectroscopy (ARPES). The quasi-1D bismuth halides can select various topological phases by different stacking procedures of vdW chains, offering a fascinating playground for engineering topologically non-trivial edge-states toward future spintronics applications.The Z 2 weak topological insulator (WTI) phases have been confirmed in the materials with stacked QSHI layers, where the side-surface becomes topologically non-trivial by accumulating helical edge states of QSHI layers [13,14]. Similarly, higher-order topological insulators (HOTIs) are expected to be built from stacking QSHIs, which, however, accumulate the 1D edge-states to develop 1D helical hinge-states in a 3D crystal [15,16]. Such HOTI phases have been theoretically predicted recently in materials previously regarded as trivial insulators under the Z 2 criterion by extending the topological classification to the Z 4 topological index [17][18][19][20][21][22]. To date, only one material has been experimentally confirmed to be in the higher-order topological phase, which is bulk bismuth [23]. However, bulk bismuth is a semimetal, which cannot become insulating even by carrier doping. Materials science is, therefore, awaiting the first experimental realization of a HOTI, which enables one to explore various quantum phenomena including spin currents around hinges and quantized conductance under the external fields.A quasi-1D bismuth bromide, Bi 4 Br 4 , with a bilayer structure of chains (Fig. 1b) is theoretically predicted to be a topological crystalline insulator of Z 2,2,2,4 = {0, 0, 0, 2}, protected by the C 2 -rotation symmetry [10,11,[19][20][21]. This state should develop 2D topological surface states in the cross-section (010) of the chains [24,25]. Significantly, theory also categorizes this system as a HOTI, and expects that 1D helical hinge-states emerge between the top-surface (001) and the side-surface (100) of a crystal due to the second-order bulk-boundary correspondence [10,11]. Nevertheless, the topological phase of Bi 4 Br 4 has
A quantum spin Hall (QSH) insulator hosts topological states at the one-dimensional (1D) edge, along which backscattering by nonmagnetic impurities is strictly prohibited. Its 3D analogue, a weak topological insulator (WTI), possesses similar quasi-1D topological states confined at side surfaces. The enhanced confinement could provide a route for dissipationless current and better advantages for applications relative to strong topological insulators (STIs). However, the topological side surface is usually not cleavable and is thus hard to observe. Here, we visualize the topological states of the WTI candidate ZrTe5 by spin and angle-resolved photoemission spectroscopy (ARPES): a quasi-1D band with spin-momentum locking was revealed on the side surface. We further demonstrate that the bulk band gap is controlled by external strain, realizing a more stable WTI state or an ideal Dirac semimetal (DS) state. The highly directional spin-current and the tunable band gap in ZrTe5 will provide an excellent platform for applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.