Wnt/β-catenin signaling promotes neural differentiation by activation of the neuron-specific transcription factors, Neurogenin1 (Ngn1), NeuroD and Brn3a, in the nervous system. Since neurons in cranial sensory ganglia and dorsal root ganglia transiently express Ngn1, NeuroD and Brn3a during embryonic development, we hypothesized that Wnt proteins could instructively promote a sensory neuronal fate from mesencymal stem cells (MSCs) directed to differentiate into neurons. Consistent with our hypothesis, Wnt1 induced expression of sensory neuron markers including Ngn1, NeuroD and Brn3a, as well as glutamatergic markers in neurally-induced MSCs in vitro and promoted engraftment of transplanted MSCs in the inner ear bearing selective loss of sensory neurons in vivo. Given the consensus function of T cell leukemia 3 (Tlx3), as a glutamatergic selector gene, we postulated that the effects of canonical Wnt signaling on sensory neuron and glutamatergic marker gene expression in MSCs may be mediated by Tlx3. We first confirmed that Wnt1 indeed up-regulates Tlx3 expression, which can be suppressed by canonical Wnt inhibitors. Next, our chromatin immunoprecipitation assays revealed that T-cell factor 3/4 (TCF3/4), Wnt-activated DNA binding proteins, interact with a regulatory region of Tlx3 in MSCs after neural induction. Furthermore, we demonstrated that forced expression of Tlx3 in MSCs induced sensory and glutamatergic neuron markers after neural induction. Together, these results identify Tlx3 as a novel target for canonical Wnt signaling that confers somatic stem cells with a sensory neuron phenotype upon neural induction.
The adenomatous polyposis coli (APC) gene is mutated in familial adenomatous polyposis and in most sporadic colorectal tumors. During both embryonic and postnatal periods, APC is widely expressed in a variety of tissues, including the brain and gastrointestinal tract. The APC gene product (APC) is a large multidomain protein consisting of 2843 amino acids. APC downregulates the Wnt signaling pathway through its binding to beta-catenin and Axin. Most mutated APC proteins in colorectal tumors lack the beta-catenin-binding regions and fail to inhibit Wnt signaling, leading to the overproliferation of tumor cells. Several mouse models (APC580D, APCDelta716, APC1309, APCMin, APC1638T) have been established to investigate carcinogenesis caused by APC mutations. APC also binds to APC-stimulated guanine nucleotide exchange factor, the kinesin superfamily-associated protein 3, IQGAP1, microtubules, EB1, and discs large (DLG). APC has both nuclear localization signals and nuclear export signals in its molecule, suggesting its occasional nuclear localization and export of beta-catenin from the nucleus. APC is highly expressed in the intestinal and colorectal epithelia and may be involved in homeostasis of the enterocyte renewal phenomena, in which proliferation, migration, differentiation, and apoptosis are highly regulated both temporally and spatially. Through the many binding proteins mentioned, APC can exert multiple functions involved in epithelial homeostasis.
It is known that magnesium antagonizes phosphate-induced apoptosis of vascular smooth muscle cells and prevents vascular calcification. Here we tested whether magnesium can also counteract other pathological conditions where phosphate toxicity is involved, such as progression of chronic kidney disease (CKD). We explored how the link between the risk of CKD progression and hyperphosphatemia is modified by magnesium status. A post hoc analysis was run in 311 non-diabetic CKD patients who were divided into four groups according to the median values of serum magnesium and phosphate. During a median follow-up of 44 months, 135 patients developed end-stage kidney disease (ESKD). After adjustment for relevant clinical factors, patients in the lower magnesium-higher phosphate group were at a 2.07-fold (95% CI: 1.23-3.48) risk for incident ESKD and had a significantly faster decline in estimated glomerular filtration rate compared with those in the higher magnesium-higher phosphate group. There were no significant differences in the risk of these renal outcomes among the higher magnesium-higher phosphate group and both lower phosphate groups. Incubation of tubular epithelial cells in high phosphate and low magnesium medium in vitro increased apoptosis and the expression levels of profibrotic and proinflammatory cytokine; these changes were significantly suppressed by increasing magnesium concentration. Thus, magnesium may act protectively against phosphate-induced kidney injury.
Activating transcription factor 1 (ATF1) and the cAMP response element-binding protein (CREB) are members of the CREB/ATF family implicated in cAMP- and calcium-induced transcriptional activation. Although ATF1 and CREB share extensive homology, the function of ATF1 is poorly understood. Its phosphorylation state and activation by Ca2+- and calmodulin-dependent protein kinase (CaMK) II were therefore examined. Phosphopeptide mapping analysis and Western blotting studies demonstrated that in vitro, CaMK II phosphorylates only Ser63 (corresponding to Ser133 of CREB), which is essential for the activation, and not Ser72 (corresponding to Ser142 of CREB), which is a negative regulation site. Both ATF1 and CREB bound CBP in a phosphorylation-dependent manner. As expected from these in vitro studies, transient transfection studies revealed that ATF1 is activated by CaMK II. Our findings suggest that CaMK II mediates transactivation of cAMP responsive genes via ATF1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.