BackgroundThe Agatston score, commonly used to quantify coronary artery calcification (CAC), is determined by the plaque area and density. Despite an excellent predictability of the Agatston score for cardiovascular events, the density of CAC has never been studied in patients with pre-dialysis chronic kidney disease (CKD). This study aimed to analyze the CAC density and its association with serum mineral levels in CKD.MethodsWe enrolled patients with pre-dialysis CKD who had diabetes mellitus, prior cardiovascular disease history, elevated low-density lipoprotein cholesterol levels, or smoking history. The average CAC density was calculated by dividing the Agatston score by the total area of CAC.ResultsThe mean estimated glomerular filtration rate (eGFR) of 109 enrolled patients was 35.7 mL/min/1.73 m2. The correlation of the Agatston score with density was much weaker than that with the total area (R2 = 0.19, P < 0.001; and R2 = 0.99, P < 0.001, respectively). Multivariate analyses showed that serum magnesium level was inversely associated with the density, but not with the total area, after adjustment for demographics and clinical factors related to malnutrition-inflammation-atherosclerosis syndrome and mineral and bone disorders including fibroblast growth factor 23 (P = 0.006). This inverse association was pronounced among patients with higher serum phosphate levels (P for interaction = 0.02).ConclusionCAC density was inversely associated with serum magnesium levels, particularly in patients with higher serum phosphate levels.
High-strength and ultra low-permeability concrete (HSULPC) is a strong candidate for a radioactive waste package containing transuranic radionuclides (TRU waste) for geological disposal. Knowledge of the time-dependent fracturing of HSULPC and surrounding rock mass is essential to assess the long-term stability of such underground repositories. We have measured crack velocity in andesite and HSULPC both in air and water to examine subcritical crack growth by the Double-Torsion method. In air, the crack velocity in andesite increased when the temperature and relative humidity increased. On the other hand, the temperature and relative humidity had little effect on the crack velocity in HSULPC in air. In water, the crack velocity increased when the temperature was higher for both andesite and HSULPC. Using these experimental results, the longterm strength was estimated. It was shown that the long-term strength of HSULPC was higher than that of andesite. In air, the long-term strength for andesite was affected by the temperature and relative humidity. The long-term strength for andesite decreased when the temperature or relative humidity increased. For HSULPC, the change of the long-term strength with varying temperature or relative humidity was smaller than andesite in air. In water, the long-term strength for both materials decreased with increasing the temperature. Comparing the longterm strength of andesite and HSULPC at the same environmental conditions, it was recognized that the decrease of the long-term strength of HSULPC is smaller than that of andesite. The long-term strength in water was smaller than that in air for both materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.