Let p be a prime number and F a totally real field. In this article, we obtain a p-adic interpolation of spaces of totally definite quaternionic automorphic forms over F of finite slope, and construct p-adic families of automorphic forms parametrized by affinoid Hecke varieties. Further, as an application to the case where [F : Q] is even, we obtain p-adic analytic families of Hilbert eigenforms having fixed finite slope parametrized by weights. This is an analogue of Coleman's analytic families in [R.F. Coleman, p-Adic Banach spaces and families of modular forms, Invent. Math. 127 (1997) 417-479].
Let f be a primitive form whose weight is greater than 2. Weston [23, Theorem 1] showed that the mod p representation ρ associated to f is irreducible and the deformation problem for ρ is unobstructed for almost all p. The aim of this article is to give a simpler proof of his result in some cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.