Most 3D scanners use optical technology that is impacted by lighting conditions, especially in triangulation with structured-light or laser techniques. However, the effect of ambient lights on the accuracy of the face scans remains unclear. The purpose of this study is to investigate the effect of ambient lights on the accuracy of the face scans obtained from the face scanner (EinScan Pro 2X Plus, Shining 3D Tech. Co., LTD., Hangzhou, China). A head model was designed in Rhinoceros 5 software (Rhino, Robert McNeel and Associates for Windows, Washington DC, USA) and printed with 200 micron resolution of polylactic acid and was dented with 2.0 mm of carbide bur to aid in superimposition in software. The head model was measured by a coordinate-measuring machine (CMM) to generate a reference stereolithography (STL) file as a control. The face model was scanned four times under nine light conditions: cool white (CW), warm white (WW), daylight (DL), natural light (NL), and illuminant (9w, 18w, 22w). Scan data were exported into an STL file. The scan STL files obtained were compared with the reference STL file by 3D inspection software (Geomagic Control X version 17, Geomagic, Morrisville, NC, USA). The deviations and root mean square errors (RMSEs) between the reference model (trueness) and within the group (precision) were selected for the statistical analysis. The statistical analysis was done using SPSS 20.0 (IBM Company, Chicago, USA). The trueness and precision were evaluated with the one-way ANOVA with multiple comparisons using the Tukey method. For trueness, the scanner showed the lowest RMSE under the NL group (77.18 ± 3.22) and the highest RMSE under the 18w-DL group (95.33 ± 6.89). There was a statistically significant difference between the NL group and the 18w-DL group (p < 0.05) for trueness. Similarly, for precision, the scanner showed the lowest RMSE under the NL group (56.92 ± 4.56) and the highest RMSE under the 9w-CW group (78.52 ± 10.61). There was statistically significant difference between NL, 18w-WW, 18w-CW, 18w-DL, 22w-WW, 22w-DL, 9w-CW, 9w-WW, and 9w-DL (p < 0.05) for the precision. Ambient lights affected the face scans. Under the natural light condition, the face scanner had the best accuracy in terms of both trueness and precision. The 18w-DL and 9w-WW conditions showed the least trueness whereasthe 9w-CW and 9w-DL conditions showed the least precision.
The influence of the co-additive concentration (0 -45 wt% with an interval of 5 wt%) of MgO-TiO 2 on the phase formation, microstructure and fracture toughness of MgO-TiO 2 -reinforced dental porcelain nanocomposites derived from a one-step sintering technique were examined using a combination of X-ray diffraction, scanning electron microscopy and Vickers indentation. It was found that MgO-TiO 2 -reinforced dental porcelain nanocomposites exhibited significantly higher fracture toughness values than those observed in single-additive (MgO or TiO 2)-reinforced dental porcelain composites at any given sintering temperature. The amount of MgO-TiO 2 as a co-additive was found to be one of the key factors controlling the phase formation, microstructure and fracture toughness of these nanocomposites. It is likely that 30 wt% of MgO-TiO 2 as a co-additive is the optimal amount for MgTi 2 O 5 and Mg 2 SiO 4 crystalline phase formation to obtain the maximum relative density (96.80%) and fracture toughness (2.60 ± 0.07 MPa•m 1 / 2) at a sintering temperature of 1000°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.