Background: Pleural effusion is not pathognomic and distinguishing between transudates and exudates often presents a diagnostic dilemma. The purpose of our study was to examine whether the inclusion of pleural fluid brain natriuretic peptide (BNP) measurement into the analysis improves the diagnostic accuracy of pleural effusion. Methods: The pleural effusion of 14 patients with CHF (group A) and 14 subjects with different pleural pathology (group B) were analyzed. Samples of pleural fluid and serum were obtained from all patients on admission and biochemical analysis, bacterial and fungal culture, acid-fast bacilli smear and culture and cytology were performed on the pleural fluid. In vitro quantitative determination of N-terminal pro-Brain natriuretic peptide (NTproBNP) in serum and pleural fluid were performed by electrochemiluminescence immunoassay proBNP method on an Elecsys 2010 (Roche) analyzer. Results: The median NT-proBNP levels in groups A and B were 6295 pg/ml and 276 pg/ml, respectively: ( P=0.0001). There was no overlap between the two groups. While the Light's criteria had a sensitivity of 93% and specificity of 43% for transudates, the pleural fluid NT-proBNP level accurately differentiated between the two groups. Conclusions: The pleural NT-proBNP levels were elevated in all patients who had transudate. Therefore if the NT-proBNP levels of pleural effusion are within the normal range, transudate resulting from congestive heart failure can be ruled out. Our results suggest that the inclusion of pleural fluid NT-proBNP measurement in the routine diagnostic panel would enhance discrimination among the different causes of pleural effusions.
Thiamine monophosphatase (TMPase) has been selectively localized in small dorsal root ganglion cells and in their central and peripheral terminals. Light microscopic localization of TMPase, and its alterations due to transganglionic effects, are identical with those of fluoride-resistant acid phosphatase (FRAP), but are not contaminated by the ubiquitous lysosomal reaction inevitable in trivial acid phosphatase-stained sections. TMPase is inhibited by 0.1 mM NaF, which is slightly less than the concentration needed to inhibit FRAP (0.2-0.4 mM). It is assumed that TMPase and FRAP are identical enzymes. In the perikaryon of small dorsal root ganglion cells, TMPase is located in the cisterns of the endoplasmic reticulum and in the Golgi apparatus. The central terminals of these cells are scalloped (sinusoid) axon terminals, surrounded by membrane-bound TMPase activity. Central terminals outline substantia gelatinosa Rolandi throughout the spinal cord, as well as the analogous nucleus spinalis trigemini in the medulla. TMPase-active central terminals outline "faisceau de la corne postérieure" in the sacral cord, as well as Lissauer's tract in the thoracic, upper lumbar, and sacral segments, and the paratrigeminal nucleus and the terminal (sensory) nucleus of the ala cinerea in the brainstem. Peripheral terminals displaying TMPase activity are fine nerve plexuses of C fibers. The TMPase activity of the central terminals disappears after dorsal rhizotomy in the course of Wallerian degeneration, and is depleted in the course of transganglionic degenerative atrophy (after transection of the related peripheral sensory nerve). TMPase is an outstanding genuine marker for the study of transganglionic regulation in Muridae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.