Lactose-based prebiotics are synthesized by enzymatic- or microbial- biotransformation of lactose and have unique functional values. In this comprehensive review article, the biochemical mechanisms of controlling osteoporosis, blood-lipid, and glucose levels by lactose-based prebiotics and symbiosis with probiotics are reported along with the results of clinical investigations. Interaction between lactose-based prebiotics and probiotics reduces osteoporosis by (a) transforming insoluble inorganic salts to soluble and increasing their absorption to gut wall; (b) maintaining and protecting mineral absorption surface in the intestine; (c) increasing the expression of calcium-binding proteins in the gut wall; (d) remodeling osteoclasts and osteoblasts formation; (e) releasing bone modulating factors; and (f) degrading mineral complexing phytic acid. Lactose-based prebiotics with probiotics control lipid level in the bloodstream and tissue by (a) suppressing the expressions of lipogenic- genes and enzymes; (b) oxidizing fatty acids in muscle, liver, and adipose tissue; (c) binding cholesterol with cell membrane of probiotics and subsequent assimilation by probiotics; (d) enzymatic-transformations of bile acids; and (e) converting cholesterol to coprostanol and its defecation. Symbiosis of lactose-based prebiotics with probiotics affect plasma glucose level by (a) increasing the synthesis of gut hormones plasma peptide-YY, glucagon-like peptide-1 and glucagon-like peptide-2 from entero-endocrine L-cells; (b) altering glucose assimilation and metabolism; (c) suppressing systematic inflammation; (d) reducing oxidative stress; and (e) producing amino acids. Clinical investigations show that lactose-based prebiotic galacto-oligosaccharide improves mineral absorption and reduces hyperlipidemia. Another lactose-based prebiotic, lactulose, improves mineral absorption, and reduces hyperlipidemia and hyperglycemia. It is expected that this review article will be of benefit to food technologists and medical practitioners.
Liquid milk protein concentrate with different beneficial values was prepared by membrane filtration and enzymatic modification of proteins in a sequential way. In the first step, milk protein concentrate was produced from ultra-heat-treated skimmed milk by removing milk serum as permeate. A tubular ceramic-made membrane with filtration area 5 × 10−3 m2 and pore size 5 nm, placed in a cross-flow membrane house, was adopted. Superior operational strategy in filtration process was herein: trans-membrane pressure 3 bar, retention flow rate 100 L·h−1, and implementation of a static turbulence promoter within the tubular membrane. Milk with concentrated proteins from retentate side was treated with the different concentrations of trypsin, ranging from 0.008–0.064 g·L−1 in individual batch-mode operations at temperature 40 °C for 10 min. Subsequently, inactivation of trypsin in reaction was done at a temperature of 70 °C for 30 min of incubation. Antioxidant capacity in enzyme-treated liquid milk protein concentrate was measured with the Ferric reducing ability of plasma assay. The reduction of angiotensin converting enzyme activity by enzyme-treated liquid milk protein concentrate was measured with substrate (Abz-FRK(Dnp)-P) and recombinant angiotensin converting enzyme. The antibacterial activity of enzyme-treated liquid milk protein concentrate towards Bacillus cereus and Staphylococcus aureus was tested. Antioxidant capacity, anti-angiotensin converting enzyme activity, and antibacterial activity were increased with the increase of trypsin concentration in proteolytic reaction. Immune-reactive proteins in enzyme-treated liquid milk protein concentrate were identified with clinically proved milk positive pooled human serum and peroxidase-labelled anti-human Immunoglobulin E. The reduction of allergenicity in milk protein concentrate was enzyme dose-dependent.
In the dairy industry different types of prebiotics, such galacto-oligosaccharide, lactulose, lactosucrose, tagatose, lactitol, lactobiono-and glucono-δ-lactone are synthesized through different chemical and biochemical reactions (hydrolysis, transgalactosylation, isomerization, fructosyl-transfer, reduction, and oxidation) as well as microbial fermentation processes using raw whey or isolated lactose as feedstock. Lactose-derived prebiotics have several functional and nutritional values. The biochemical activities of lactose-based prebiotics are expressed in the presence of probiotics (lactic acid bacteria, yeasts, Bacillus spp.). Galacto-oligosaccharide and lactosucrose reduce the risk of bowel disorder (diarrhea), infl ammatory bowel disease (ulcerative colitis and crohn's disease), and colon cancer. Galacto-oligosaccharide helps colonic absorption of minerals (iron, magnesium and calcium) and prevents osteoporosis. Lactulose, galacto-oligosaccharide, and lactitol promote laxative activity. Furthermore, lactulose may decrease the risk of hepatic encephalopathy. Prebiotics have low calorifi c value and glycemic index. Galactooligosaccharide and tagatose reduce the risks of hyperglycemia (Type 2 diabetes) and low density lipid (lipoprotein) accumulation in blood stream. Moreover, prebiotics improve immunomodulation, which reduces the risk of respiratory infection and allergies. This review describes unique biochemical mechanisms of several types of lactose-derived prebiotics.
Milk and dairy products contain a number of biologically active compounds (proteins, lipids, vitamins and minerals) that are essential for human nutrition. The most common procedures for demineralization are based on ion exchange-, nanofiltration- and electrodialysis-based technologies. In this study, the application of membrane filtration-based partial demineralization of cow milk was investigated and the process modelled. Using design equations, the partial demineralization process was designed and the economy of the process calculated. The modelling and simulation of the partial demineralization process was carried out by the SuperPro Designer programme. As the first step the unit operations of the demineralization technology were defined using the tools of the programme. The SuperPro Designer possesses industrial tools with reactor models, chemical components, a database of mixtures, and price estimations. By analysing the influence of the operation parameters, the feasibility of the proposed process was investigated. From the results of the modelling it can be concluded that the partial demineralization process can be successfully implemented, achieving the expected demineralization rates with a relatively good payback time of two years.
Milk and dairy products contain a number of biological materials that are essential for the human body, for example proteins, lipids, vitamins and minerals. In this study the application of membrane filtration based milk partial demineralization is detailed. The main point of the partial demineralization is to reduce the monovalent ions (Na + , K +) but to keep the divalent ions (Ca 2+ , Mg 2+) content. The experiments were carried out using laboratory ultra-and nanofiltration units. Comparing the separation behavior of the membranes it was found that the investigated membranes are suitable for the partial demineralization. The result of the Lowry test showed that the protein concentration is higher in the retentates of all membrane filtrations than in the permeates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.