Patient ForumThe content of these European Society of Cardiology (ESC) / European Association for Cardio-Thoracic Surgery (EACTS) Guidelines has been published for personal and educational use only. No commercial use is authorized. No part of the ESC/EACTS Guidelines may be translated or reproduced in any form without written permission from the ESC and the EACTS. Permission can be obtained upon submission of a written request to Oxford University Press, the publisher of the European Heart Journal and the party authorized to handle such permissions on behalf of the ESC (
Intelligent systems are wanting for cities to cope with limited spaces and resources across the world. As a result, smart cities emerged mainly as a result of highly innovative ICT industries and markets, and additionally, they have started to use novel solutions taking advantage of the Internet of Things (IoT), big data and cloud computing technologies to establish a profound connection between each component and layer of a city. Several key technologies congregate to build a working smart city considering human requirements. Even though the smart city concept is an advanced solution for today's cities, recently, more living spaces should be discovered, and the concept of a smart city could be moved to these alternative living spaces, namely floating cities. The concept of a floating city emerged as a novel solution due to rising sea levels and land scarcity in order to provide alternative living spaces for humanity. In this article, our main research question is to raise awareness on the current state of smart city concepts across the world by understanding the key future trends, including floating cities, by motivating researchers and scientists through new IoT technologies and applications. Therefore, we present a survey of smart city initiatives and analyze their key concepts and different data management techniques. We performed a detailed literature survey and review by applying a complex literature matrix including terms, like smart people, smart economy, smart governance, smart mobility, smart environment, and smart living. We also discuss multiple perspectives of smart floating cities in detail. With the proposed approach, recent advances and practical future opportunities for smart cities can be revealed.
This study tested the hypothesis that the induction of autophagy by producing therapeutic amounts of endoplasmic reticulum (ER) stress in the heart before an ischemic insult would ameliorate/reduce subsequent lethal myocardial ischemic/reperfusion (I/R) injury (similar to ischemic preconditioning). A dose-response study with both tunicamycin and thapsigargin was performed to determine the optimal dose (0.3 mg/kg) for inducing autophagy for cardioprotection. The Sprague-Dawley rats weighing between 250 and 300 g were randomly assigned into five groups: normal control (injected with saline only), high (3 mg/kg), and low (0.3 mg/kg) doses of tunicamycin or thapsigargin, respectively. After 48 h, the rats were subjected to an isolated working heart preparation: 30 min ischemia followed by 2 h of reperfusion with continuous left ventricular function monitoring. At the end, the hearts were subjected to either measurement of infarct size or cardiomyocyte apoptosis. Some hearts (from different sets of experiments) were used for transmission electron microscopy (TEM), confocal microscopy, or Western blot analysis. Tunicamycin and thapsigargin, irrespective of the dose, induced sufficient ER stress, as evidenced by the increased phosphorylation or activation of eIF2α and PERK. Such ER stress potentiated autophagy in the heart, as evidenced by an increase in LC3-II, beclin-1, and Atg5. This was also supported by TEM, clearly showing the production of autophagosomes, and by confocal microscopy, showing upregulation of eIF2α and beclin-1. The autophagy produced with lower doses of tunicamycin and thapsigargin in the face of myocardial I/R resulted in reduction of the I/R injury, as evidenced by improved left ventricular function and reduced myocardial infarct size and cardiomyocyte apoptosis. In concert, an induction of GRP78 and activation of Akt and Bcl-2 occurred. The higher doses conversely were detrimental for the heart and were associated with induction of CHOP and downregulation of Akt. The results thus display the proof of concept that induction of autophagy by ER stress (therapeutic amount) before ischemia (similar to ischemic preconditioning) could reduce subsequent lethal ischemic reperfusion injury.
BackgroundGrowing evidence exists for soluble Angiotensin Converting Enzyme-2 (sACE2) as a biomarker in definitive heart failure (HF), but there is little information about changes in sACE2 activity in hypertension with imminent heart failure and in reverse remodeling.Methods, FindingsPatients with systolic HF (NYHAII-IV, enrolled for cardiac resynchronisation therapy, CRT, n = 100) were compared to hypertensive patients (n = 239) and to a healthy cohort (n = 45) with preserved ejection fraction (EF>50%) in a single center prospective clinical study. The status of the heart failure patients were checked before and after CRT. Biochemical (ACE and sACE2 activity, ACE concentration) and echocardiographic parameters (EF, left ventricular end-diastolic (EDD) and end-systolic diameter (ESD) and dP/dt) were measured.sACE2 activity negatively correlated with EF and positively with ESD and EDD in all patient's populations, while it was independent in the healthy cohort. sACE2 activity was already increased in the hypertensive group, where signs for imminent heart failure (slightly decreased EF and barely increased NT-proBNP levels) were detected. sACE2 activities further increased in patients with definitive heart failure (EF<50%), while sACE2 activities decreased with the improvement of the heart failure after CRT (reverse remodeling). Serum angiotensin converting enzyme (ACE) concentrations were lower in the diseased populations, but did not show a strong correlation with the echocardiographic parameters.ConclusionsSoluble ACE2 activity appears to be biomarker in heart failure, and in hypertension, where heart failure may be imminent. Our data suggest that sACE2 is involved in the pathomechanism of hypertension and HF.
Nowadays billions of smart devices or things are present in Internet of Things (IoT) environments, such as homes, hospitals, factories, and vehicles, all around the world. As a result, the number of interconnected devices is continuously and rapidly growing. These devices communicate with each other and with other services using various communication protocols for the transportation of sensor or event data. These protocols enable applications to collect, store, process, describe, and analyze data to solve a variety of problems. IoT also aims to provide secure, bi-directional communication between interconnected devices, such as sensors, actuators, microcontrollers or smart appliances, and corresponding cloud services. In this paper we analyze the growth of M2M protocol research (MQTT, AMQP, and CoAP) over the past 20 years, and show how the growth in MQTT research stands out from the rest. We also gather relevant application areas of MQTT, as the most widespread M2M/IoT protocol, by performing a detailed literature search in major digital research archives. Our quantitative evaluation presents some of the important MQTT-related studies published in the past five years, which we compare to discuss the main features, advantages, and limitations of the MQTT protocol. We also propose a taxonomy to compare the properties and features of various MQTT implementations, i.e. brokers and libraries currently available in the public domain to help researchers and end-users to efficiently choose a broker or client library based on their requirements. Finally, we discuss the relevant findings of our comparison and highlight open issues that need further research and attention. INDEX TERMS IoT, IoT Protocols, MQTT, MQTT Brokers, Survey I. INTRODUCTIONT HE Internet of Things (IoT) connects everyday devices like a fridge, oven, vehicle, washing machine, fitness band, watch, and even shoes to the internet [1]. It enables us to collect monitored data from these devices over a network without any human-to-human or human-to-computer interaction that can be used to improve our life, business or environments [3]. For example, a simple IoT application like an activity or fitness tracker can inform many things about us, such as distance we walked, ran, cycled or swam, pace, pulse rate, (swim) stroke count, calories we burned, sleep quality to help us improve our regimen. Efficient IoT solutions can help us to control these devices remotely from our phones or tablets. No matter it is agriculture, transport, sports, health, military, energy, or entertainment; today the application space of IoT is virtually endless. It is rare to find any industrial area that does not get benefits from this IoT revolution. Social networking and smart city applications can also benefit from this trend [4]. Instead of waiting for monthly or yearly reports, business and industry can get accurate consumer-data in real-time. They can analyze the data to make more informed decisions, which can add value to their business [5].Cloud Computing [6] provides on-deman...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.