Metadata—the machine-readable descriptions of the data—are increasingly seen as crucial for describing the vast array of biomedical datasets that are currently being deposited in public repositories. While most public repositories have firm requirements that metadata must accompany submitted datasets, the quality of those metadata is generally very poor. A key problem is that the typical metadata acquisition process is onerous and time consuming, with little interactive guidance or assistance provided to users. Secondary problems include the lack of validation and sparse use of standardized terms or ontologies when authoring metadata. There is a pressing need for improvements to the metadata acquisition process that will help users to enter metadata quickly and accurately. In this paper, we outline a recommendation system for metadata that aims to address this challenge. Our approach uses association rule mining to uncover hidden associations among metadata values and to represent them in the form of association rules. These rules are then used to present users with real-time recommendations when authoring metadata. The novelties of our method are that it is able to combine analyses of metadata from multiple repositories when generating recommendations and can enhance those recommendations by aligning them with ontology terms. We implemented our approach as a service integrated into the CEDAR Workbench metadata authoring platform, and evaluated it using metadata from two public biomedical repositories: US-based National Center for Biotechnology Information BioSample and European Bioinformatics Institute BioSamples. The results show that our approach is able to use analyses of previously entered metadata coupled with ontology-based mappings to present users with accurate recommendations when authoring metadata.
The Center for Expanded Data Annotation and Retrieval (CEDAR) aims to revolutionize the way that metadata describing scientific experiments are authored. The software we have developed¾the CEDAR Workbench¾is a suite of Web-based tools and REST APIs that allows users to construct metadata templates, to fill in templates to generate high-quality metadata, and to share and manage these resources. The CEDAR Workbench provides a versatile, RESTbased environment for authoring metadata that are enriched with terms from ontologies. The metadata are available as JSON, JSON-LD, or RDF for easy integration in scientific applications and reusability on the Web. Users can leverage our APIs for validating and submitting metadata to external repositories. The CEDAR Workbench is freely available and open-source.
The adaptation of high-throughput sequencing to the B cell receptor and T cell receptor has made it possible to characterize the adaptive immune receptor repertoire (AIRR) at unprecedented depth. These AIRR sequencing (AIRR-seq) studies offer tremendous potential to increase the understanding of adaptive immune responses in vaccinology, infectious disease, autoimmunity, and cancer. The increasingly wide application of AIRR-seq is leading to a critical mass of studies being deposited in the public domain, offering the possibility of novel scientific insights through secondary analyses and meta-analyses. However, effective sharing of these large-scale data remains a challenge. The AIRR community has proposed minimal information about adaptive immune receptor repertoire (MiAIRR), a standard for reporting AIRR-seq studies. The MiAIRR standard has been operationalized using the National Center for Biotechnology Information (NCBI) repositories. Submissions of AIRR-seq data to the NCBI repositories typically use a combination of web-based and flat-file templates and include only a minimal amount of terminology validation. As a result, AIRR-seq studies at the NCBI are often described using inconsistent terminologies, limiting scientists’ ability to access, find, interoperate, and reuse the data sets. In order to improve metadata quality and ease submission of AIRR-seq studies to the NCBI, we have leveraged the software framework developed by the Center for Expanded Data Annotation and Retrieval (CEDAR), which develops technologies involving the use of data standards and ontologies to improve metadata quality. The resulting CEDAR-AIRR (CAIRR) pipeline enables data submitters to: (i) create web-based templates whose entries are controlled by ontology terms, (ii) generate and validate metadata, and (iii) submit the ontology-linked metadata and sequence files (FASTQ) to the NCBI BioProject, BioSample, and Sequence Read Archive databases. Overall, CAIRR provides a web-based metadata submission interface that supports compliance with the MiAIRR standard. This pipeline is available at , and will facilitate the NCBI submission process and improve the metadata quality of AIRR-seq studies.
BackgroundPublic biomedical data repositories often provide web-based interfaces to collect experimental metadata. However, these interfaces typically reflect the ad hoc metadata specification practices of the associated repositories, leading to a lack of standardization in the collected metadata. This lack of standardization limits the ability of the source datasets to be broadly discovered, reused, and integrated with other datasets. To increase reuse, discoverability, and reproducibility of the described experiments, datasets should be appropriately annotated by using agreed-upon terms, ideally from ontologies or other controlled term sources.ResultsThis work presents “CEDAR OnDemand”, a browser extension powered by the NCBO (National Center for Biomedical Ontology) BioPortal that enables users to seamlessly enter ontology-based metadata through existing web forms native to individual repositories. CEDAR OnDemand analyzes the web page contents to identify the text input fields and associate them with relevant ontologies which are recommended automatically based upon input fields’ labels (using the NCBO ontology recommender) and a pre-defined list of ontologies. These field-specific ontologies are used for controlling metadata entry. CEDAR OnDemand works for any web form designed in the HTML format. We demonstrate how CEDAR OnDemand works through the NCBI (National Center for Biotechnology Information) BioSample web-based metadata entry.ConclusionCEDAR OnDemand helps lower the barrier of incorporating ontologies into standardized metadata entry for public data repositories. CEDAR OnDemand is available freely on the Google Chrome store https://chrome.google.com/webstore/search/CEDAROnDemand
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.