ABSTRACT:The relationship between early changes in biochemical markers of bone turnover and the subsequent BMD response to daily teriparatide therapy in women with postmenopausal osteoporosis was studied. Changes in five biochemical markers, obtained from a subset of women enrolled in the Fracture Prevention Trial, were examined. Early increases in the PICP and the PINP were the best predictors of BMD response to teriparatide in this analysis.Introduction: Early reductions in biochemical markers of bone turnover with antiresorptive therapy negatively correlate with subsequent increases in BMD. We undertook this analysis to determine if early changes in biochemical markers with teriparatide therapy predict subsequent increases in BMD. Materials and Methods:In the Fracture Prevention Trial, 1637 postmenopausal women with osteoporosis were randomized to receive daily, self-administered, subcutaneous injections of placebo, teriparatide 20 g/ day, or teriparatide 40 g/day. Serum concentrations of two bone formation markers (bone-specific alkaline phosphatase [bone ALP] and the carboxy-terminal extension peptide of procollagen type 1 [PICP]) and urinary concentrations of two bone resorption markers (free deoxypyridinoline [DPD] and N-terminal telopeptide [NTX]) were assessed in a trial population subset (n ס 520) at baseline and at 1, 3, 6, and 12 months. We also assessed serum concentrations of another bone formation marker, the amino-terminal extension peptide of procollagen type 1 (PINP), in a subset of 771 women at baseline and 3 months. Lumbar spine (LS) BMD was measured by DXA at baseline and 18 months. Femoral neck BMD was measured at baseline and 12 months. Results and Conclusion: Baseline bone turnover status correlated positively and significantly with BMD response. The highest correlations occurred for the LS BMD response to teriparatide 20 g/day. Among all studied biochemical markers, increases in PICP at 1 month and PINP at 3 months correlated best with increases in LS BMD at 18 months (0.65 and 0.61, respectively; p < 0.05). The relationships between these two biochemical markers and the LS BMD response were stronger than the corresponding relationships for the femoral neck BMD response. Using receiver operator curve analysis, we determined that the increases in PICP at 1 month and PINP at 3 months were the most sensitive and accurate predictors of the LS BMD response.
The distribution of the pan-macrophage CD68 antigen, recognized by six different monoclonal antibodies, was examined in human blood, tissue, and cell lines using APAAP staining and Western blotting. All antibodies stained monocytes and macrophages, but labelling of neutrophils, basophils, and lymphocytes was seen with some of the reagents. In addition, the CD68 antibodies demonstrated a variety of staining patterns on some non-haemopoietic cells. The subtle differences between the reactions of the different antibodies suggested that the CD68 antigen may be heterogeneous, possibly due to differences in glycosylation. While CD68 antibodies are very useful markers of the macrophage/myeloid series, the presence of small amounts of the antigen on some lymphoid and non-haemopoietic cells means that care should be taken when using them for the diagnosis of tumours of unknown origin.
A follow-up in 1262 women was conducted after the discontinuation of teriparatide. The hazard ratio for combined teriparatide group (20 and 40 µg) for the 50-month period after baseline was 0.57 (p = 0.002), suggesting a sustained effect in reducing the risk of nonvertebral fragility fracture.Introduction: Treatment with teriparatide [rhPTH(1-34)] 20 and 40 g once-daily subcutaneous dosing significantly reduced the risk of nonvertebral fragility fractures over a median exposure of 19 months. Materials and Methods: All participants in the Fracture Prevention Trial were invited to participate in a follow-up study. Prior treatment assignments were revealed, and patients were able to receive osteoporosis treatments without restriction.Results: Approximately 60% of the 1262 patients received an osteoporosis treatment at some time during follow-up, with greater use in the former placebo group than in the combined former teriparatide group (p < 0.05). The hazard ratios for nonvertebral fragility fractures in each teriparatide group relative to placebo were statistically significant for the 50-month period including treatment and follow-up (p < 0.03). In the follow-up period, the hazard ratio was significantly different between the 40 g and combined groups versus placebo but not for the 20 g group versus placebo. However, the 20 and 40 g groups were not different from each other. Kaplan-Meier analysis of time to fracture showed that the fracture incidence in the former placebo and teriparatide groups diverged during the 50-month period including teriparatide treatment and follow-up (p ס 0.009). Total hip and femoral neck BMD decreased in teriparatide-treated patients who had no follow-up treatment; BMD remained stable or further increased in patients who received a bisphosphonate after teriparatide treatment. Conclusions: While the study design is observational, the results support a sustained effect of teriparatide in reducing the risk of nonvertebral fragility fractures up to 30 months after discontinuation of treatment.
Early (1-month) changes in biochemical markers of bone formation, but not resorption, correlated with improvements in bone structure after 22 months of teriparatide therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.