Previous studies have shown that recessive mutations at the Arabidopsis ABSCISIC ACID-INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEAFY COTYLEDON1 (LEC1) loci lead to various abnormalities during mid-embryogenesis and late embryogenesis. In this study, we investigated whether these loci act in independent regulatory pathways or interact in controlling certain facets of seed development. Several developmental responses were quantified in abi3, fus3, and lec1 single mutants as well as in double mutants combining either the weak abi3-1 or the severe abi3-4 mutations with either fus3 or lec1 mutations. Our data indicate that ABI3 interacts genetically with both FUS3 and LEC1 in controlling each of the elementary processes analyzed, namely, accumulation of chlorophyll and anthocyanins, sensitivity to abscisic acid, and expression of individual members of the 12S storage protein gene family. In addition, both FUS3 and LEC1 regulate positively the abundance of the ABI3 protein in the seed. These results suggest that in contrast to previous models, the ABI3, FUS3, and LEC1 genes act synergistically to control multiple elementary processes during seed development.
Previous studies have shown that recessive mutations at the Arabidopsis ABSCISIC ACID-INSENSITIVE3 (AB13), FUSCA3 (FUS3), and LEAFY CONLEDONl (LECl) loci lead to various abnormalities during mid-embryogenesis and late embryogenesis. In this study, we investigated whether these loci act in independent regulatory pathways or interact in controlling certain facets of seed development. Severa1 developmental responses were quantified in abi3, fus3, and lecl single mutants as well as in double mutants combining either the weak abi3-7 or the severe abi3-4 mutations with either fus3 or lecl mutations. Our data indicate that A613 interacts genetically with both FUS3 and LECl in controlling each of the elementary processes analyzed, namely, accumulation of chlorophyll and anthocyanins, sensitivity to abscisic acid, and expression of individual members of the 12s storage protein gene family. In addition, both FUS3 and LECl regulate positively the abundance of the A613 protein in the seed. These results suggest that in contrast to previous models, the AB13, FUS3, and LECl genes act synergistically to control multiple elementary processes during seed development
Recently, we have designed a series of simplified artificial signal sequences and have shown that a proline residue in the signal sequence plays an important role in the secretion of human lysozyme in yeast, presumably by altering the conformation of the signal sequence [Yamamoto, Y., Taniyama, Y., & Kikuchi, M. (1989) Biochemistry 28, 2728-2732]. To elucidate the conformational requirement of the signal sequence in more detail, functional and nonfunctional signal sequences connected to the N-terminal five residues of mature human lysozyme were chemically synthesized and their conformations in a lipophilic environment [aqueous trifluoroethanol (TFE) or sodium dodecyl sulfate micelles] analyzed by circular dichroism (CD) and 1H nuclear magnetic resonance (NMR) spectroscopy. The helix content of the peptides, including functional (L8, CL10) and nonfunctional (L8PL, L8PG, L8PL2) signal sequences, was estimated from CD spectra to be 40-50% and 60-70%, respectively, indicating that the helical structure is more abundant in the nonfunctional signal sequences. Two-dimensional NMR analyses in 50% TFE/H2O revealed that each peptide adopted a helical conformation throughout the sequence except for a few residues at the N- and C-termini. Furthermore, H-D exchange experiments indicated that the helical structure of the C-terminal region of the functional signal sequences (L8 and CL10) was less stable than that of the nonfunctional signal sequences (L8PL and L8PL2). On the basis of these results, a model was developed in which the functional signal sequence is inserted in the membrane with a helical conformation and the C-terminal helix unraveled in an extended conformational form through an interaction with the signal peptidase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.