Photochemical Machining is a novel machining process capable of processing wide range of hard-to-machine materials. This research addresses modelling and optimization of the process parameters for this machining technique. To model the process a set of experimental data has been used to evaluate the effects of various parameter settings in machining of SS316L. The process variables considered here include etchant temperature, time and concentration. Undercut, as one of the most important output characteristics, has been evaluated based on different parameter settings. The full factorial method and regression modelling are used in order to establish the relationships between input and output parameters. The effect of control parameters on undercut was analysed using Analysis of Variance (ANOVA) technique and their optimal conditions were evaluated. It was found that etchant temperature and etching time are the most significant factors for undercut.
In this study, the optimal homotopy analysis (OHAM) technique has been examined to solve the laminar magnetohydrodynamic flow (MHD flow) on the upper‐convected Maxwell fluid on an isothermal porous stretch surface. A study on the effects of parameters like the relaxation time, suction/injection velocity, as well as the magnetic number on velocity over a sheet was conducted and these results are compared to the corresponding previously available results. It was observed that the thickness of the boundary layer is lowered by enhancing s, β, and M values. Opposing this, it was observed that large β values increase the f″(0) magnituIIde. It is found that OHAM is an efficient method capable of giving a greater degree of accuracy in numerical values of flow parameters even after fewer approximations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.