IMPORTANCE Establishment of the infant microbiome has lifelong implications on health and immunity. Gut microbiota of breastfed compared with nonbreastfed individuals differ during infancy as well as into adulthood. Breast milk contains a diverse population of bacteria, but little is known about the vertical transfer of bacteria from mother to infant by breastfeeding. OBJECTIVE To determine the association between the maternal breast milk and areolar skin and infant gut bacterial communities. DESIGN, SETTING, AND PARTICIPANTS In a prospective, longitudinal study, bacterial composition was identified with sequencing of the 16S ribosomal RNA gene in breast milk, areolar skin, and infant stool samples of 107 healthy mother-infant pairs. The study was conducted in
Abnormal composition of intestinal bacteria —“dysbiosis”— is characteristic of Crohn’s disease. Disease treatments include dietary changes and immunosuppressive anti-TNFα antibodies as well as ancillary antibiotic therapy but their effects on microbiota composition are undetermined. Using shotgun metagenomic sequencing, we analyzed fecal samples from a prospective cohort of pediatric Crohn’s disease patients starting therapy with enteral nutrition or anti-TNFα antibodies and reveal the full complement and dynamics of bacteria, fungi, archaea and viruses during treatment. Bacterial community membership was associated independently with intestinal inflammation, antibiotic use, and therapy. Antibiotic exposure was associated with increased dysbiosis, whereas dysbiosis decreased with reduced intestinal inflammation. Fungal proportions increased with disease and antibiotic use. Dietary therapy had independent and rapid effects on microbiota composition distinct from other stressor-induced changes and effectively reduced inflammation. These findings reveal that dysbiosis results from independent effects of inflammation, diet, and antibiotics and shed light on Crohn disease treatments.
BackgroundRecent studies have suggested that bacteria associated with the placenta—a “placental microbiome”—may be important in reproductive health and disease. However, a challenge in working with specimens with low bacterial biomass, such as placental samples, is that some or all of the bacterial DNA may derive from contamination in dust or commercial reagents. To investigate this, we compared placental samples from healthy deliveries to a matched set of contamination controls, as well as to oral and vaginal samples from the same women.ResultsWe quantified total 16S rRNA gene copies using quantitative PCR and found that placental samples and negative controls contained low and indistinguishable copy numbers. Oral and vaginal swab samples, in contrast, showed higher copy numbers. We carried out 16S rRNA gene sequencing and community analysis and found no separation between communities from placental samples and contamination controls, though oral and vaginal samples showed characteristic, distinctive composition. Two different DNA purification methods were compared with similar conclusions, though the composition of the contamination background differed. Authentically present microbiota should yield mostly similar results regardless of the purification method used—this was seen for oral samples, but no placental bacterial lineages were (1) shared between extraction methods, (2) present at >1 % of the total, and (3) present at greater abundance in placental samples than contamination controls.ConclusionsWe conclude that for this sample set, using the methods described, we could not distinguish between placental samples and contamination introduced during DNA purification.Electronic supplementary materialThe online version of this article (doi:10.1186/s40168-016-0172-3) contains supplementary material, which is available to authorized users.
The mammalian intestine is colonized by beneficial commensal bacteria and is a site of infection by pathogens, including helminth parasites. Helminths induce potent immuno-modulatory effects, but whether these effects are mediated by direct regulation of host immunity or indirectly through eliciting changes in the microbiota is unknown. We tested this in the context of virus-helminth co-infection. Helminth co-infection resulted in impaired antiviral immunity and was associated with changes in the microbiota and STAT6-dependent helminth-induced alternative activation of macrophages. Notably, helminth-induced impairment of antiviral immunity was evident in germ-free mice but neutralization of Ym1, a chitinase-like molecule that is associated with alternatively-activated macrophages, could partially restore antiviral immunity. These data indicate that helminth-induced immuno-modulation occurs independently of changes in the microbiota but is dependent on Ym1.
Few studies have examined the lung virome in health and disease. Outcomes of lung transplantation are known to be influenced by several recognized respiratory viruses, but global understanding of the virome of the transplanted lung is incomplete. To define the DNA virome within the respiratory tract following lung transplantation we carried out metagenomic analysis of allograft bronchoalveolar lavage (BAL), and compared to healthy and HIV+ subjects. Viral concentrates were purified from BAL and analyzed by shotgun DNA sequencing. All of the BAL samples contained reads mapping to anelloviruses, with high proportions in lung transplant samples. Anellovirus populations in transplant recipients were complex, with multiple concurrent variants. Q-PCR quantification revealed that anellovirus sequences were 56-fold more abundant in BAL from lung transplant recipients compared with healthy controls or HIV+ subjects (p<0.0001). Anellovirus sequences were also more abundant in upper respiratory tract specimens from lung transplant recipients than controls (p=0.006). Comparison to metagenomic data on bacterial populations showed that high anellovirus loads correlated with dysbiotic bacterial communities in allograft BAL (p=0.00816). Thus the respiratory tracts of lung transplant recipients contain high levels and complex populations of anelloviruses, warranting studies of anellovirus lung infection and transplant outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.