A hydrogel was prepared from pullulan and evaluated as a novel biomaterial for vascular engineering. Using a crosslinking process with sodium trimetaphosphate in aqueous solution, homogeneous, transparent, and easy-to-handle pullulan gels were obtained with water-content higher than 90%. A circular punch was used to cut 6-mm diameter and 2-mm thickness discs for cell culture. Environmental scanning electron microscopy analysis of hydrated gels revealed a smooth surface, on which rabbit vascular smooth muscle cells were successfully seeded. The absence of cytotoxicity was evidenced by a live/dead assay. Fluorescence-labeled cells were observed adhering and progressively spreading out on the surface of the material. Cellular proliferation was followed for up to 1 week using an MTT assay. In addition, a complete in vitro degradation of the gels was achieved in 3 h upon incubation in a pullulanase solution (44 U/mL). In conclusion, we have shown the feasibility of preparing a biocompatible pullulan-based hydrogel that could support vascular cell culture. Based on these promising results, future studies will focus on the seeding of vascular cells on tubular-shaped hydrogels and the in vivo implantation of these new biomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.