Recent efforts in the field of thrombin inhibitor research have focused on the identification of compounds with good oral bioavailability and pharmacokinetics. In this manuscript we describe a metabolism-based approach to the optimization of the 3-(2-phenethylamino)-6-methylpyrazinone acetamide template (e.g., 1) which resulted in the modification of each of the three principal components (i.e., P1, P2, P3) comprising this series. As a result of these studies, several potent thrombin inhibitors (e.g., 20, 24, 25) were identified which exhibit high levels of oral bioavailability and long plasma half-lives.
We compared the cardiac electrophysiological actions of two types of H1-receptor antagonists--the piperidines, astemizole and terfenadine, and the nonpiperidines, chlorpheniramine and pyrilamine-in vitro in guinea pig ventricular myocytes and in vivo in chloralose-anesthetized dogs. Astemizole and terfenadine significantly increased action potential duration of guinea pig myocytes. This concentration-dependent prolongation of action potential duration was reverse frequency dependent and led to development of early afterdepolarizations, which occurred more frequently at higher concentrations and slower pacing frequencies. Astemizole and terfenadine potently blocked the rapidly activating component of the delayed rectifier, IKr, with IC50 values of 1.5 and 50 nmol/L, respectively. At 10 mumol/L, terfenadine but not astemizole blocked the slowly activating component of the delayed rectifier, IKs (58.4 +/- 3.1%), and the inward rectifier, IK1 (20.5 +/- 3.4%). Chlorpheniramine and pyrilamine blocked IKr relatively weakly (IC50 = 1.6 and 1.1 mumol/L, respectively) and IKs and IK1 less than 20% at 10 mumol/L. Astemizole and terfenadine (1.0 to 3.0 mg/kg IV) significantly prolonged the QTc interval and ventricular effective refractory period in vivo. Chlorpheniramine and pyrilamine (< or = 3.0 mg/kg) did not significantly affect these parameters. Block of repolarizing K+ currents, particularly IK1, by astemizole and terfenadine produces reverse rate-dependent prolongation of action potential duration and development of early afterdepolarizations, delays ventricular repolarization, and may underlie the development of torsade de pointes ventricular arrhythmias observed with the use and abuse of these agents.
In an effort to discover potent, clinically useful thrombin inhibitors, a rapid analogue synthetic approach was used to explore the P(1) region. Various benzylamines were coupled to a pyridine/pyrazinone P(2)-P(3) template. One compound with an o-thiadiazole benzylic substitution was found to have a thrombin K(i) of 0.84 nM. A study of ortho-substituted five-membered-ring heterocycles was undertaken and subsequently demonstrated that the o-triazole and tetrazole rings were optimal. Combination of these potent P(1) aryl heterocycles with a variety of P(2)-P(3) groups produced a compound with an extraordinary thrombin inhibitory activity of 1.4 pM. It is hoped that this potency enhancement in P(1) will allow for more diversification in the P(2)-P(3) region to ultimately address additional pharmacological concerns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.