Highly active yttrium phosphasalen initiators for the stereocontrolled ring-opening polymerization of rac-lactide are reported. The initiators are coordinated by a new class of ancillary ligand: an iminophosphorane derivative of the popular "salen" ligand, termed "phosphasalen". Changing the phosphasalen structure enables access to high iso-selectivities (P(i) = 0.84) or hetero-selectivities (P(s) = 0.87). The initiators also show very high rates, excellent polymerization control, and tolerance to low loadings; furthermore, no chiral auxiliaries/ligands are needed for the stereocontrol. The combination of such high rates with high iso-selectivities is very unusual.
Reaction of the precursor complex Ir2(ppy)4Cl2 (ppy = 2-phenylpyridine) with the bridging ligand 3,8-dipyridyl-4,7-phenanthroline (L) affords, in 94% yield, the cyclometalated iridium dinuclear complex [(ppy)2Ir(mu-L)Ir(ppy)2]2+ (12+) as a mixture of three stereoisomers. This mixture consists of a meso form Delta,Lambda and a racemic form (enantiomeric pair Delta,Delta and Lambda,Lambda) in the ratio 1:1.5. Single-crystal X-ray characterization of the perchlorate salt of the meso form reveals (i) the distortion of the bridging ligand from the planarity and (ii) the location of the two iridium subunits above and below the medium plane of the bridging ligand. Ion-pair chromatography with Delta-TRISPHAT anion (TRISPHAT = tris(tetrachlorobenzenediolato)phosphate(V)) as resolving anion permits the separation of the three stereoisomers. The 1H NMR spectroscopic analysis of each fraction indicates high diastereomeric purity. Electronic circular dichroism properties and comparison with literature data establish their absolute configuration. The absorption and emission properties of the three stereoisomers show only very small variations. The anisotropic properties can be interpreted as distinct interactions of the isomers with the chiral resolving Delta-TRISPHAT anion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.