Scientific knowledge in the field of ecology is increasingly enriched by data acquired by the general public participating in citizen science (CS) programs. Yet, doubts remain about the reliability of such data, in particular when acquired by schoolchildren. We built upon an ongoing CS program, Oak Bodyguards, to assess the ability of schoolchildren to accurately estimate the strength of biotic interactions in terrestrial ecosystems. We used standardized protocols to estimate attack rates on artificial caterpillars and insect herbivory on oak leaves. We compared estimates made by schoolchildren with estimates made by professional scientists who had been trained in predation and herbivory assessments (henceforth, trained scientists), and trained scientists' estimates with those made by professional scientists with or without expertise (untrained) in predation or herbivory assessment. Compared with trained scientists, both schoolchildren and untrained professional scientists overestimated attack rates, but assessments made by the latter were more consistent. Schoolchildren tended to overestimate insect herbivory, as did untrained professional scientists. Raw data acquired by schoolchildren participating in CS programs therefore require several quality checks by trained professional scientists before being used. However, such data are of no less value than data collected by untrained professional scientists. CS with schoolchildren can be a valuable tool for carrying out ecological research, provided that the data itself is acquired by professional scientists from material collected by citizens.
Scientific knowledge in the field of ecology is increasingly enriched by data acquired by the general public participating in citizen science (CS) programs. Yet, doubts remain about the reliability of such data, in particular when acquired by school children. We built upon an ongoing CS program -Oak bodyguards -to assess the ability of European schoolchildren to accurately estimate the strength of biotic interactions in terrestrial ecosystems. We used standardized protocols to estimate predation rates on artificial caterpillars and insect herbivory on oak leaves and compared estimates made by school children, trained and untrained professional scientists (with no or limited expertise in predation or herbivory assessment). Compared to trained scientists, both schoolchildren and untrained professional scientists overestimated predation rates, but assessments made by the latter were more consistent. School children overestimated insect herbivory, as did untrained professional scientists. Thus, raw data acquired by school children participating in CS programs cannot be used and require several quality checks. However, such data are of no less value than data collected by untrained professional scientists and can be calibrated for bias.
Background and Aims Highly controlled experiments document that plant genetic diversity and relatedness can shape herbivore communities and patterns of herbivory. Evidence from the field is, however, scarce and inconsistent. We assessed whether a genetic signal underlying herbivory can be detected in oak woodlands when accounting for variation at smaller (within-tree) and larger (among-stand) scales. Methods We tested relationships between tree genetic relatedness, leaf chemical defences and insect herbivory for different canopy layers in 240 trees from 15 pedunculate oak (Quercus robur) forest stands. We partitioned sources of variability in herbivory and defences among stands, individuals and branches. Key Results Leaf defences, insect herbivory and their relationship differed systematically between the upper and the lower tree canopy. When accounting for this canopy effect, the variation explained by tree genetic relatedness rose from 2.8 to 34.1 % for herbivory and from 7.1 to 13.8 % for leaf defences. The effect was driven by markedly stronger relationships in the upper canopy. Conclusions Our findings illustrate that considerable effects of the host plant genotype on levels of leaf chemical defences and associated insect herbivory can be detected in natural tree populations when within-individual variation is properly accounted for.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.