Methionine is an essential amino acid that is limiting in maize-(Zea mays L.) based diets. The objective of this work was to determine whether we could alter grain methionine concentration in random-mated maize populations by mass selection for methionine concentration using a microbial assay. In one study, we developed two populations by selecting for high or low methionine concentration (HM or LM, respectively) for three generations starting from the randommated population BS11. Grain from these populations was used to formulate diets for a feeding trial in which 15 rats were fed HM grain and 15 rats were fed LM grain. Rats on the HM diet had a 0.018 higher feed effi ciency (g gain/g feed) than rats on the LM diet. In a second study, we performed three cycles of selection for high or low methionine concentration starting with two random-mated populations, BS11 and BS31. We evaluated each cycle of selection in a fi eld trial with two replications in each of two years. Methionine concentration was signifi cantly correlated with the cycle of selection, changing on average 0.004 g methionine/100 g grain per cycle. Kernel mass, %N, oil, protein, starch, tryptophan, and lysine concentration did not exhibit signifi cant correlations with cycle of selection. We conclude that recurrent selection for grain methionine concentration using a microbial assay is an effective method to alter methionine content.
Bacterial spot of tomato is caused by four species of Xanthomonas. The accession PI 128216 (Solanum pimpinellifolium) displays a hypersensitive reaction (HR) to race T3 strains (predominantely Xanthomonas perforans). We developed an inbred backcross (IBC) population (BC(2)S(5), 178 families) derived from PI 128216 and OH88119 (S. lycopersicum) as the susceptible recurrent parent for simultaneous introgression and genetic analysis of the HR response. These IBC families were evaluated in the greenhouse for HR to race T3 strain Xcv761. The IBC population was genotyped with molecular markers distributed throughout the genome in order to identify candidate loci conferring resistance. We treated the IBC population as a hypothesis forming generation to guide validation in subsequent crosses. Nonparametric analysis identified an association between HR and markers clustered on chromosome 11 (P < 0.05 to 0.0001) and chromosome 6 (0.04 > P > 0.002). Further analysis of the IBC population suggested that markers on chromosome 6 and 11 failed to assort independently, a phenomenon known as gametic phase disequilibrium. Therefore, to validate marker-trait linkages, resistant IBC plants were crossed with OH88119 and BC(3)F(2) progeny were evaluated for HR in the greenhouse. In these subsequent populations, the HR response was associated with the chromosome 11 markers (P < 0.0002) but not with the markers on chromosome 6 (P > 0.25). Independent F(2) families were developed by crossing resistant IBC lines to OH8245, OH88119, and OH7530. These populations were genotyped, organized into classes based on chromosome 11 markers, and evaluated for resistance in the field. The PI 128216 locus on chromosome 11 provided resistance that was dependent on gene dosage and genetic background. These results define a single locus, Rx-4, from PI 128216, which provides resistance to bacterial spot race T3, has additive gene action, and is located on chromosome 11.
Color defines one aspect of quality for tomato and tomato products. Carotenoid pigments are responsible for the red and orange colors of tomato fruit, and thus color is also of dietary interest. The aims of this study were (1) to determine the relative importance of field sampling and analytical replication when measuring lycopene and beta-carotene in tomato fruit and (2) to determine the effect of yellow shoulder disorder (YSD) on the content of lycopene and beta-carotene in tomato juice and tissue. Our results show that increasing biological replications is an efficient strategy for reducing the experimental error associated with measurements of lycopene and beta-carotene. Analytical replications did not contribute significantly to observed variation, and therefore experimental efficiency will be gained by reducing analytical replications while increasing field replication. We found that YSD significantly reduces lycopene in affected tissue and in juice made from affected fruit. In contrast, beta-carotene concentrations were only reduced in affected tissue but were not significantly reduced in juice. With increasing interest in biofortified crops, modulating the carotenoid profile in tomato by minimizing YSD symptoms represents a strategy for improving tomato fruit quality that is currently supported by grower contract structure and processor grades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.