Explaining the evolution of species geographical ranges is fundamental to understanding how biodiversity is distributed and maintained. The solution to this classic problem in ecology and evolution remains elusive: we still do not fully know how species geographical ranges evolve and what factors fuel range expansions. Resolving this problem is now more crucial than ever with increasing biodiversity loss, global change and movement of species by humans. Here, we describe and evaluate the hypothesis that hybridization between species can contribute to species range expansion. We discuss how such a process can occur and the empirical data that are needed to test this hypothesis. We also examine how species can expand into new environments via hybridization with a resident species, and yet remain distinct species. Generally, hybridization may play an underappreciated role in influencing the evolution of species ranges. Whether-and to what extent-hybridization has such an effect requires further study across more diverse taxa.
The diversity of sexual signals is astounding, and divergence in these traits is believed to be associated with the early stages of speciation. An increasing number of studies also suggest a role for natural selection in driving signal divergence for effective transmission in heterogeneous environments. Both speciation and adaptive divergence, however, are contingent on the sexual signal being heritable, yet this often remains assumed and untested. It is particularly critical that the heritability of carotenoid-based sexual signals is investigated because such traits may instead be phenotypically plastic indicators of an individual's quality that exhibit no or little heritable variation. We present the first study to investigate the relative contribution of genetic and environmental factors to the striking diversity of dewlap color and pattern in Anolis lizards. Using a breeding experiment with Anolis distichus populations exhibiting different dewlap phenotypes, we raise F1 offspring in a common garden experiment to assess whether dewlap color is inherited. We follow this with carotenoid supplementation to investigate the influence of dietary pigments to dewlap color variation. We find significant differences in several aspects of dewlap color and pattern to persist to the F1 generation (fathers: N = 19; F1 males: N = 50; P < 0.01) with no change in dewlap phenotype with carotenoid supplementation (N = 52; P > 0.05). These results strongly support that genetic differences underlie dewlap color variation, thereby satisfying a key requirement of natural selection. Our findings provide an important stepping-stone to understanding the evolution of an incredibly diverse signal important for sexual selection and species recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.