Background: The opportunity to quantitatively predict next-season injury risk in the National Hockey League (NHL) has become a reality with the advent of advanced computational processors and machine learning (ML) architecture. Unlike static regression analyses that provide a momentary prediction, ML algorithms are dynamic in that they are readily capable of imbibing historical data to build a framework that improves with additive data. Purpose: To (1) characterize the epidemiology of publicly reported NHL injuries from 2007 to 2017, (2) determine the validity of a machine learning model in predicting next-season injury risk for both goalies and position players, and (3) compare the performance of modern ML algorithms versus logistic regression (LR) analyses. Study Design: Descriptive epidemiology study. Methods: Professional NHL player data were compiled for the years 2007 to 2017 from 2 publicly reported databases in the absence of an official NHL-approved database. Attributes acquired from each NHL player from each professional year included age, 85 performance metrics, and injury history. A total of 5 ML algorithms were created for both position player and goalie data: random forest, K Nearest Neighbors, Naïve Bayes, XGBoost, and Top 3 Ensemble. LR was also performed for both position player and goalie data. Area under the receiver operating characteristic curve (AUC) primarily determined validation. Results: Player data were generated from 2109 position players and 213 goalies. For models predicting next-season injury risk for position players, XGBoost performed the best with an AUC of 0.948, compared with an AUC of 0.937 for LR ( P < .0001). For models predicting next-season injury risk for goalies, XGBoost had the highest AUC with 0.956, compared with an AUC of 0.947 for LR ( P < .0001). Conclusion: Advanced ML models such as XGBoost outperformed LR and demonstrated good to excellent capability of predicting whether a publicly reportable injury is likely to occur the next season.
We analyze the galactic H I content and nebular log(O/H) for 60 spiral galaxies in the spectral catalog. After correcting for the mass-metallicity relationship, we show that the spirals in cluster environments show a positive correlation for log(O/H) on DEF, the galactic H I deficiency parameter, extending the results of previous analyses of the Virgo and Pegasus I clusters. Additionally, we show for the first time that galaxies in the field obey a similar dependence. The observed relationship between H I deficiency and galactic metallicity resembles similar trends shown by cosmological simulations of galaxy formation including inflows and outflows. These results indicate the previously observed metallicity-DEF correlation has a more universal interpretation than simply a cluster's effects on its member galaxies. Rather, we observe in all environments the stochastic effects of metal-poor infall as minor mergers and accretion help to build giant spirals.
Videotaped discussions (among in-group or out-group members) promoting integrative or instrumental benefits of learningEuropean orAsian languages were presented randomly to participants who subsequently rated several Asian and European languages. Responses from 176 English schoolchildren (males and females, 13 years old) on measures of self-reported contact, identification, perceived status and demographic vitality, desire to learn, and integrative and instrumental value of languages were analyzed. As expected, perceptions were consistently more positive about European (especially when promoted by in-group) than Asian languages (especially when promoted by out-group). Promotion of instrumental benefits of European languages accentuated these differences, whereas in-group promotion of Asian languages attenuated existing differences. Self-categorisation and social identification processes are discussed to explain the findings.
Objectives: With the accumulation of big data surrounding National Hockey League (NHL) and the advent of advanced computational processors, machine learning (ML) is ideally suited to develop a predictive algorithm capable of imbibing historical data to accurately project a future player’s availability to play based on prior injury and performance. To the end of leveraging available analytics to permit data-driven injury prevention strategies and informed decisions for NHL franchises beyond static logistic regression (LR) analysis, the objective of this study of NHL players was to (1) characterize the epidemiology of publicly reported NHL injuries from 2007-17, (2) determine the validity of a machine learning model in predicting next season injury risk for both goalies and non-goalies, and (3) compare the performance of modern ML algorithms versus LR analyses. Methods: Hockey player data was compiled for the years 2007 to 2017 from two publicly reported databases in the absence of an official NHL-approved database. Attributes acquired from each NHL player from each professional year included: age, 85 player metrics, and injury history. A total of 5 ML algorithms were created for both non-goalie and goalie data; Random Forest, K-Nearest Neighbors, Naive Bayes, XGBoost, and Top 3 Ensemble. Logistic regression was also performed for both non-goalie and goalie data. Area under the receiver operating characteristics curve (AUC) primarily determined validation. Results: Player data was generated from 2,109 non-goalies and 213 goalies with an average follow-up of 4.5 years. The results are shown below in Table 1.For models predicting following season injury risk for non-goalies, XGBoost performed the best with an AUC of 0.948, compared to an AUC of 0.937 for logistic regression. For models predicting following season injury risk for goalies, XGBoost had the highest AUC with 0.956, compared to an AUC of 0.947 for LR. Conclusion: Advanced ML models such as XGBoost outperformed LR and demonstrated good to excellent capability of predicting whether a publicly reportable injury is likely to occur the next season. As more player-specific data become available, algorithm refinement may be possible to strengthen predictive insights and allow ML to offer quantitative risk management for franchises, present opportunity for targeted preventative intervention by medical personnel, and replace regression analysis as the new gold standard for predictive modeling. [Figure: see text]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.