Despite the success of the combination of venetoclax with the hypomethylating agents (HMA) decitabine or azacitidine in inducing remission in older, previously untreated patients with acute myeloid leukemia (AML), resistance - primary or secondary - still constitutes a significant roadblock in the quest to prolong the duration of response. Here we review the proposed and proven mechanisms of resistance to venetoclax monotherapy, HMA monotherapy, and the doublet of venetoclax and HMA for the treatment of AML. We approach the mechanisms of resistance to HMAs and venetoclax in the light of the agents’ mechanisms of action. We briefly describe potential therapeutic strategies to circumvent resistance to this promising combination, including alternative scheduling or the addition of other agents to the HMA and venetoclax backbone. Understanding the mechanisms of action and evolving resistance in AML remains a priority in order to maximize the benefit from novel drugs and combinations, identify new therapeutic targets, define potential prognostic markers, and avoid treatment failure.
Contemporary chemotherapy for childhood acute lymphoblastic leukemia (ALL) is risk-adapted based on clinical features, leukemia genomics and minimal residual disease (MRD); however, the pharmacological basis of these prognostic variables remains unclear. Analyzing samples from 805 children with newly diagnosed ALL from three consecutive clinical trials, we determined the ex vivo sensitivity of primary leukemia cells to 18 therapeutic agents across 23 molecular subtypes defined by leukemia genomics. There was wide variability in drug response, with favorable ALL subtypes exhibiting the greatest sensitivity to L-asparaginase and glucocorticoids. Leukemia sensitivity to these two agents was highly associated with MRD although with distinct patterns and only in B cell ALL. We identified six patient clusters based on ALL pharmacotypes, which were associated with event-free survival, even after adjusting for MRD. Pharmacotyping identified a T cell ALL subset with a poor prognosis that was sensitive to targeted agents, pointing to alternative therapeutic strategies. Our study comprehensively described the pharmacological heterogeneity of ALL, highlighting opportunities for further individualizing therapy for this most common childhood cancer.
The rapid advancement of high-throughput technologies and sharp decrease in cost have opened up the possibility to generate large amount of multi-omics data on an individual basis. The development of high-throughput -omics, including genomics, epigenomics, transcriptomics, proteomics, metabolomics and microbiomics, enables the application of multi-omics technologies in the clinical settings. Combination therapy, defined as disease treatment with two or more drugs to achieve efficacy with lower doses or lower drug toxicity, is the basis for the care of diseases like cancer. Patient-specific multi-omics data integration can help the identification and development of combination therapies. In this review, we provide an overview of different -omics platforms, and discuss the methods for multi-omics, high-throughput, data integration, personalized combination therapy.
The HER2 receptor modulates downstream signaling by forming homodimers and heterodimers with other members of the HER family. For patients with HER2-positive breast cancer, Trastuzumab, an anti-HER2 monoclonal antibody as first-line therapy has shown significant survival benefits. However, the development of acquired resistance to Trastuzumab continues to be a significant obstacle. TNF receptor-associated factor 4 (TRAF4) upregulation was discovered to be associated with a worse clinical outcome. Here we identified TRAF4 overexpression as one of the putative mechanisms for HER2-positive breast cancer cells to maintain HER2 signaling during Trastuzumab treatment, while TRAF4 knockdown reduced HER2 stability and improved Trastuzumab sensitivity. Mechanistically, TRAF4 regulates HER2 level through its impact on SMAD specific E3 ubiquitin protein ligase protein 2 (SMURF2). The development of a membrane-associated protein complex containing HER2, TRAF4, and SMURF2 has been observed. SMURF2 bound to the HER2 cytoplasmic domain, and directly ubiquitinated it leading to HER2 degradation, whereas TRAF4 stabilized HER2 by degrading SMURF2 and inhibiting the binding of SMURF2 to HER2. Moreover, downregulation of TRAF4 has decreased the AKT/mTOR signaling. In conclusion, we discovered a new HER2 signaling regulation that involves the TRAF4-SMURF2 complex, a possible mechanism that might contribute to anti-HER2 resistance, making TRAF4 a viable target for treating HER2 + breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.