Multiple sclerosis (MS) is an immune-mediated disease, the etiology of which involves both genetic and environmental factors. The exact nature of the environmental factors responsible for predisposition to MS remains elusive; however, it’s hypothesized that gastrointestinal microbiota might play an important role in pathogenesis of MS. Therefore, this study was designed to investigate whether gut microbiota are altered in MS by comparing the fecal microbiota in relapsing remitting MS (RRMS) (n = 31) patients to that of age- and gender-matched healthy controls (n = 36). Phylotype profiles of the gut microbial populations were generated using hypervariable tag sequencing of the V3–V5 region of the 16S ribosomal RNA gene. Detailed fecal microbiome analyses revealed that MS patients had distinct microbial community profile compared to healthy controls. We observed an increased abundance of Psuedomonas, Mycoplana, Haemophilus, Blautia, and Dorea genera in MS patients, whereas control group showed increased abundance of Parabacteroides, Adlercreutzia and Prevotella genera. Thus our study is consistent with the hypothesis that MS patients have gut microbial dysbiosis and further study is needed to better understand their role in the etiopathogenesis of MS.
SUMMARY Akt is a central regulator of cell growth. Its activity can be negatively regulated by the phosphatase PHLPP that specifically dephosphorylates the hydrophobic motif of Akt (Ser473 in Akt1). However, how PHLPP is targeted to Akt is not clear. Here we show that FKBP51 (FK506-binding protein 51) acts as a scaffolding protein for Akt and PHLPP and promotes dephosphorylation of Akt. Furthermore, FKBP51 is downregulated in pancreatic cancer tissue samples and several cancer cell lines. Decreased FKBP51 expression in cancer cells results in hyperphosphorylation of Akt and decreased cell death following genotoxic stress. Overall, our findings identify FKBP51 as a negative regulator of the Akt pathway, with potentially important implications for cancer etiology and response to chemotherapy.
Globally breast cancer is the leading cause of cancer death among women. The breast consists of epithelium, stroma and a mucosal immune system that make up a complex microenvironment. Growing awareness of the role of microbes in the microenvironment recently has led to a series of findings important for human health. The microbiome has been implicated in cancer development and progression at a variety of body sites including stomach, colon, liver, lung, and skin. In this study, we assessed breast tissue microbial signatures in intraoperatively obtained samples using 16S rDNA hypervariable tag sequencing. Our results indicate a distinct breast tissue microbiome that is different from the microbiota of breast skin tissue, breast skin swabs, and buccal swabs. Furthermore, we identify distinct microbial communities in breast tissues from women with cancer as compared to women with benign breast disease. Malignancy correlated with enrichment in taxa of lower abundance including the genera Fusobacterium, Atopobium, Gluconacetobacter, Hydrogenophaga and Lactobacillus. This work confirms the existence of a distinct breast microbiome and differences between the breast tissue microbiome in benign and malignant disease. These data provide a foundation for future investigation on the role of the breast microbiome in breast carcinogenesis and breast cancer prevention.
The gut microbiome has been implicated in multiple human chronic gastrointestinal (GI) disorders. Determining its mechanistic role in disease has been difficult due to apparent disconnects between animal and human studies and lack of an integrated multi-omics view of disease-specific physiological changes. We integrated longitudinal multi-omics data from the gut microbiome, metabolome, host epigenome, and transcriptome in the context of irritable bowel syndrome (IBS) host physiology. We identified IBS subtypespecific and symptom-related variation in microbial composition and function. A subset of identified changes in microbial metabolites correspond to host physiological mechanisms that are relevant to IBS. By integrating multiple data layers, we identified purine metabolism as a novel host-microbial metabolic pathway in IBS with translational potential. Our study highlights the importance of longitudinal sampling and integrating complementary multi-omics data to identify functional mechanisms that can serve as therapeutic targets in a comprehensive treatment strategy for chronic GI diseases. ll
Two cytidine analogues, gemcitabine (dFdC) and 1-B-Darabinofuranosylcytosine (AraC), show significant therapeutic effect in a variety of cancers. However, response to these drugs varies widely. Evidence from tumor biopsy samples shows that expression levels for genes involved in the cytidine transport, metabolism, and bioactivation pathway contribute to this variation in response. In the present study, we set out to test the hypothesis that variation in gene expression both within and outside of this ''pathway'' might influence sensitivity to gemcitabine and AraC. Specifically, Affymetrix U133 Plus 2.0 GeneChip and cytotoxicity assays were performed to obtain basal mRNA expression and IC 50 values for both drugs in 197 ethnically defined Human Variation Panel lymphoblastoid cell lines. Genes with a high degree of association with IC 50 values were involved mainly in cell death, cancer, cell cycle, and nucleic acid metabolism pathways. We validated selected significant genes by performing real-time quantitative reverse transcription-PCR and selected two representative candidates, NT5C3 (within the pathway) and FKBP5 (outside of the pathway), for functional validation. Those studies showed that down-regulation of NT5C3 and FKBP5 altered tumor cell sensitivity to both drugs. Our results suggest that cell-based model system studies, when combined with complementary functional characterization, may help to identify biomarkers for response to chemotherapy with these cytidine analogues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.