Multiple sclerosis (MS) is an immune-mediated disease, the etiology of which involves both genetic and environmental factors. The exact nature of the environmental factors responsible for predisposition to MS remains elusive; however, it’s hypothesized that gastrointestinal microbiota might play an important role in pathogenesis of MS. Therefore, this study was designed to investigate whether gut microbiota are altered in MS by comparing the fecal microbiota in relapsing remitting MS (RRMS) (n = 31) patients to that of age- and gender-matched healthy controls (n = 36). Phylotype profiles of the gut microbial populations were generated using hypervariable tag sequencing of the V3–V5 region of the 16S ribosomal RNA gene. Detailed fecal microbiome analyses revealed that MS patients had distinct microbial community profile compared to healthy controls. We observed an increased abundance of Psuedomonas, Mycoplana, Haemophilus, Blautia, and Dorea genera in MS patients, whereas control group showed increased abundance of Parabacteroides, Adlercreutzia and Prevotella genera. Thus our study is consistent with the hypothesis that MS patients have gut microbial dysbiosis and further study is needed to better understand their role in the etiopathogenesis of MS.
Globally breast cancer is the leading cause of cancer death among women. The breast consists of epithelium, stroma and a mucosal immune system that make up a complex microenvironment. Growing awareness of the role of microbes in the microenvironment recently has led to a series of findings important for human health. The microbiome has been implicated in cancer development and progression at a variety of body sites including stomach, colon, liver, lung, and skin. In this study, we assessed breast tissue microbial signatures in intraoperatively obtained samples using 16S rDNA hypervariable tag sequencing. Our results indicate a distinct breast tissue microbiome that is different from the microbiota of breast skin tissue, breast skin swabs, and buccal swabs. Furthermore, we identify distinct microbial communities in breast tissues from women with cancer as compared to women with benign breast disease. Malignancy correlated with enrichment in taxa of lower abundance including the genera Fusobacterium, Atopobium, Gluconacetobacter, Hydrogenophaga and Lactobacillus. This work confirms the existence of a distinct breast microbiome and differences between the breast tissue microbiome in benign and malignant disease. These data provide a foundation for future investigation on the role of the breast microbiome in breast carcinogenesis and breast cancer prevention.
Background & Aims In fecal samples from patients with chronic constipation, the microbiota differs from that of healthy subjects. However, the profiles of fecal microbiota only partially replicate those of the mucosal microbiota. It is not clear whether these differences are caused by variations in diet or colonic transit, or are associated with methane production (measured by breath tests). We compared the colonic mucosal and fecal microbiota in patients with chronic constipation and in healthy subjects to investigate the relationships between microbiota and other parameters. Methods Sigmoid colonic mucosal and fecal microbiota samples were collected from 25 healthy women (controls) and 25 women with chronic constipation and evaluated by 16S ribosomal RNA gene sequencing (average of 49,186 reads/sample). We assessed associations between microbiota (overall composition and operational taxonomic units) and demographic variables, diet, constipation status, colonic transit, and methane production (measured in breath samples after oral lactulose intake). Results Fourteen patients with chronic constipation had slow colonic transit. The profile of the colonic mucosal microbiota differed between constipated patients and controls (P<.05). The overall composition of the colonic mucosal microbiota was associated with constipation, independent of colonic transit (P<.05) and discriminated between patients with constipation and controls with 94% accuracy. Genera from Bacteroidetes were more abundant in the colonic mucosal microbiota of patients with constipation. The profile of the fecal microbiota was associated with colonic transit before adjusting for constipation, age, body mass index, and diet; genera from Firmicutes (Faecalibacterium, Lactococcus, and Roseburia) correlated with faster colonic transit. Methane production was associated with the composition of the fecal microbiota, but not with constipation or colonic transit. Conclusions After adjusting for diet and colonic transit, the profile of the microbiota in the colonic mucosa could discriminate patients with constipation from healthy individuals. The profile of the fecal microbiota was associated with colonic transit and methane production (measured in breath), but not constipation.
BackgroundEndometrial cancer studies have led to a number of well-defined but mechanistically unconnected genetic and environmental risk factors. One of the emerging modulators between environmental triggers and genetic expression is the microbiome. We set out to inquire about the composition of the uterine microbiome and its putative role in endometrial cancer.MethodsWe undertook a study of the microbiome in samples taken from different locations along the female reproductive tract in patients with endometrial cancer (n = 17), patients with endometrial hyperplasia (endometrial cancer precursor, n = 4), and patients afflicted with benign uterine conditions (n = 10). Vaginal, cervical, Fallopian, ovarian, peritoneal, and urine samples were collected aseptically both in the operating room and the pathology laboratory. DNA extraction was followed by amplification and high-throughput next generation sequencing (MiSeq) of the 16S rDNA V3-V5 region to identify the microbiota present. Microbiota data were summarized using both α-diversity to reflect species richness and evenness within bacterial populations and β-diversity to reflect the shared diversity between bacterial populations. Statistical significance was determined through the use of multiple testing, including the generalized mixed-effects model.ResultsThe microbiome sequencing (16S rDNA V3-V5 region) revealed that the microbiomes of all organs (vagina, cervix, Fallopian tubes, and ovaries) are significantly correlated (p < 0.001) and that there is a structural microbiome shift in the cancer and hyperplasia cases, distinguishable from the benign cases (p = 0.01). Several taxa were found to be significantly enriched in samples belonging to the endometrial cancer cohort: Firmicutes (Anaerostipes, ph2, Dialister, Peptoniphilus, 1–68, Ruminococcus, and Anaerotruncus), Spirochaetes (Treponema), Actinobacteria (Atopobium), Bacteroidetes (Bacteroides and Porphyromonas), and Proteobacteria (Arthrospira). Of particular relevance, the simultaneous presence of Atopobium vaginae and an uncultured representative of the Porphyromonas sp. (99 % match to P. somerae) were found to be associated with disease status, especially if combined with a high vaginal pH (>4.5).ConclusionsOur results suggest that the detection of A. vaginae and the identified Porphyromonas sp. in the gynecologic tract combined with a high vaginal pH is statistically associated with the presence of endometrial cancer. Given the documented association of the identified microorganisms with other pathologies, these findings raise the possibility of a microbiome role in the manifestation, etiology, or progression of endometrial cancer that should be further investigated.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-016-0368-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.