We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the solar system, exploring the transient optical sky, and mapping the Milky Way. LSST will be a large, wide-field ground-based system designed to obtain repeated images covering the sky visible from Cerro Pachón in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg 2 field of view, a 3.2-gigapixel camera, and six filters (ugrizy) covering the wavelength range 320-1050 nm. The project is in the construction phase and will begin regular survey operations by 2022. About 90% of the observing time will be devoted to a deep-wide-fast survey mode that will uniformly observe a 18,000 deg 2 region about 800 times (summed over all six bands) during the anticipated 10 yr of operations and will yield a co-added map to r∼27.5. These data will result in databases including about 32 trillion observations of 20 billion galaxies and a similar number of stars, and they will serve the majority of the primary science programs. The remaining 10% of the observing time will be allocated to special projects such as Very Deep and Very Fast time domain surveys, whose details are currently under discussion. We illustrate how the LSST science drivers led to these choices of system parameters, and we describe the expected data products and their characteristics.
We present evidence that spots imaged using astronomical CCDs do not exactly scale with flux: bright spots tend to be broader than faint ones, using the same illumination pattern. We measure that the linear size of spots or stars, of typical size 3 to 4 pixels FWHM, increase linearly with their flux by up to 2 % over the full CCD dynamic range. This brighter-fatter effect affects both deep-depleted and thinned CCD sensors. We propose that this effect is a direct consequence of the distortions of the drift electric field sourced by charges accumulated within the CCD during the exposure and experienced by forthcoming light-induced charges in the same exposure. The pixel boundaries then become slightly dynamical: overfilled pixels become increasingly smaller than their neighbors, so that bright star sizes, measured in number of pixels, appear larger than those of faint stars. This interpretation of the brighter-fatter effect implies that pixels in flat-fields should exhibit statistical correlations, sourced by Poisson fluctuations, that we indeed directly detect. We propose to use the measured correlations in flat-fields to derive how pixel boundaries shift under the influence of a given charge pattern, which allows us in turn to predict how star shapes evolve with flux. We show that, within the precision of our tests, we are able to quantitatively relate the correlations of flat-field pixels and the broadening of stars with flux. This physical model of the brighter-fatter effect also explains the commonly observed phenomenon that the spatial variance of CCD flat-fields increases less rapidly than their average.
Charge-coupled devices (CCDs) are widely used in astronomy to carry out a variety of measurements, such as for flux or shape of astrophysical objects. The data reduction procedures almost always assume that the response of a given pixel to illumination is independent of the content of the neighboring pixels. We show evidence that this simple picture is not exact for several CCD sensors. Namely, we provide evidence that localized distributions of charges (resulting from star illumination or laboratory luminous spots) tend to broaden linearly with increasing brightness by up to a few percent over the whole dynamic range. We propose a physical explanation for this "brighter-fatter" effect, which implies that flatfields do not exactly follow Poisson statistics: the variance of flatfields grows less rapidly than their average, and neighboring pixels show covariances, which increase similarly to the square of the flatfield average. These covariances decay rapidly with pixel separation. We observe the expected departure from Poisson statistics of flatfields on CCD devices and show that the observed effects are compatible with Coulomb forces induced by stored charges that deflect forthcoming charges. We extract the strength of the deflections from the correlations of flatfield images and derive the evolution of star shapes with increasing flux. We show for three types of sensors that within statistical uncertainties, our proposed method properly bridges statistical properties of flatfields and the brighter-fatter effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.