Sudan grass is a high-quality forage of sorghum. The degree of lignification of Sudan grass is the main factor affecting its digestibility in ruminants such as cattle and sheep. Almost all lignocellulose in Sudan grass is stored in the secondary cell wall, but the mechanism and synthesis of the secondary cell wall in Sudan grass is still unclear. In order to study the mechanism of secondary cell wall synthesis in Sudan grass, we used an in vitro induction system of Sudan grass secondary cell wall. Through transcriptome sequencing, it was found that the NAC transcription factor CcNAC1 gene was related to the synthesis of the Sudan grass secondary cell wall. This study further generated CcNAC1 overexpression lines of Arabidopsis to study CcNAC1 gene function in secondary cell wall synthesis. It was shown that the overexpression of the CcNAC1 gene can significantly increase lignin content in Arabidopsis lines. Through subcellular localization analysis, CcNAC1 genes could be expressed in the nucleus of a plant. In addition, we used yeast two-hybrid screening to find 26 proteins interacting with CcNAC1. GO and KEGG analysis showed that CcNAC1 relates to the metabolic pathways and biosynthesis of secondary metabolites. In summary, the synthesis of secondary cell wall of Sudan grass can be regulated by CcNAC1.
Legumes are essential foods for man and animal. They contribute to food security globally. However, they are negatively affected by Sclerotinia diseases caused by Sclerotinia sclerotiorum, which infects over 600 plant species. There is a limited number of review studies on the management of the Sclerotinia sclerotiorum disease in legume crops. Here, we explore earlier studies on the occurrences, yield losses, and other negative effects caused by Sclerotinia spp. in legumes. Additionally, we studied the various strategies used in controlling Sclerotinia sclerotiorum diseases in legume crops. We conclude that the impact of Sclerotinia diseases on legume crops causes an economic loss, as it reduces their quality and yield. Among the management strategies explored, genetic control is challenging due to the limited resistance among germplasm, while biological agents show promising results. Fungicide application is effective during outbreaks of Sclerotinia diseases. Lastly, this review has uncovered gaps in the current knowledge regarding the alleviation of Sclerotinia diseases in legume crops.
NAC transcription factors (TFs) could regulate drought stresses in plants; however, the function of NAC TFs in soybeans remains unclear. To unravel NAC TF function, we established that GmNAC12, a NAC TF from soybean (Glycine max), was involved in the manipulation of stress tolerance. The expression of GmNAC12 was significantly upregulated more than 10-fold under drought stress and more than threefold under abscisic acid (ABA) and ethylene (ETH) treatment. In order to determine the function of GmNAC12 under drought stress conditions, we generated GmNAC12 overexpression and knockout lines. The present findings showed that under drought stress, the survival rate of GmNAC12 overexpression lines increased by more than 57% compared with wild-type plants, while the survival rate of GmNAC12 knockout lines decreased by at least 46%. Furthermore, a subcellular localisation analysis showed that the GmNAC12 protein is concentrated in the nucleus of the tobacco cell. In addition, we used a yeast two-hybrid assay to identify 185 proteins that interact with GmNAC12. Gene ontology (GO) and KEGG analysis showed that GmNAC12 interaction proteins are related to chitin, chlorophyll, ubiquitin–protein transferase, and peroxidase activity. Hence, we have inferred that GmNAC12, as a key gene, could positively regulate soybean tolerance to drought stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.