Phosphates in wastewater at elevated concentrations cause eutrophication of water bodies and their removal from treated wastewater is essential before effluents are discharged to the environment. Phosphates are predominately removed during wastewater treatment by chemical precipitation which is usually expensive and has a significant environmental footprint. The purpose of this study was to investigate the effectiveness of waste recycled bricks as adsorbent for phosphate removal during wastewater treatment. The kinetics, isotherms, and thermodynamics of adsorption were investigated to establish the mechanisms of adsorption. The results showed that adsorption capacities increased with an increase in contact time, adsorbent dosage, and initial phosphate concentration. The kinetic study indicated that adsorption was governed by several mechanisms with various processes dominating different stages of the adsorption. The adsorption process was better represented by the pseudo-second-order kinetics and the Langmuir isotherm adequately described the adsorption of phosphates onto brick particles with a maximum adsorption capacity of 5.35 mg/g. The thermodynamic studies showed that the adsorption process was exothermic and proceeded spontaneously, demonstrating that waste bricks can be used as a sustainable alternative for the effective removal of phosphates from wastewater.
Publisher: Elsevier NOTICE: this is the author's version of a work that was accepted for publication in Reliability Engineering & System Safety. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Reliability Engineering & System Safety, [167, (2017)]
AB STRACT: Endocrine disrupting chemicals are discharged into the environment mainly through wastewater treatment processes. There is a need for better understanding of the fate of these compounds in the unit processes of treatment plant to optimise their removal. The fate of oestrone, 17β-estradiol, 17α-ethinyestradiol and nonylphenol in the unit processes of full scale wastewater treatment plants in the UK, including activated sludge plant, oxidation ditch, biofilter and rotating biological contactor were investigated. The overall removal efficiencies of all the compounds ranged from 41 % to 100 %. The removals were predominantly during the secondary biological treatment with the rates of removal related to the nitrification rates and the sludge age. The removal efficiency of the treatment processes were in the order activated sludge > oxidation ditch > biofilter > rotating biological contactors. Activated sludge plant configured for biological nutrient removal showed better removal of the endocrine disrupting chemicals compared to conventional activated sludge plant effluents. Tertiary treatment was also significant in the removal process through solids removal. Overall mechanisms of removal were biodegradation and sorption unto sludge biomass. Phytoremediation was also significant in the removal processes. The endocrine disrupting chemicals persisted in the anaerobic sludge digestion process with percentage removals ranging fro 10-48 %. Sorption of the endocrine disrupting chemicals onto the sludge increased with increasing values for the partitioning coefficients and the organic carbon contents of the sludge.
Oil spill pollution has remained a source of several international litigations in the Niger Delta region of Nigeria. In this paper, we examined the impacts of small recurrent crude oil spills on the physicochemical, microbial and hydrobiological properties of the Nun River, a primary source of drinking water, food and recreational activities for communities in the region. Samples were collected from six sampling points along the stretch of the lower Nun River over a 3-week period. Temperature, pH salinity, turbidity, total suspended solids, total dissolved solids, dissolved oxygen, phosphate, nitrate, heavy metals, BTEX, PAHs and microbial and plankton contents were assessed to ascertain the quality and level of deterioration of the river. The results obtained were compared with the baseline data from studies, national and international standards. The results of the physicochemical parameters indicated a significant deterioration of the river quality due to oil production activities. Turbidity, TDS, TSS, DO, conductivity and heavy metals (Cd, Cr, Cu, Pb, Ni and Zn) were in breach of the national and international limits for drinking water aquatic health. They were also significantly higher than the initial baseline conditions of the river. Also, there were noticeable changes in the phytoplankton, zooplankton and microbial diversities due to oil pollution across the sampling zones.
The mechanism, isotherms and kinetics of removal of two endocrine disrupting chemicals, 17β-estradiol (E2) and 17α-ethinyloestradiol (EE2) by activated carbon adsorption were investigated in an agitated non-flow batch adsorption studies. Mathematical models were used to describe the adsorption phenomenon with the kinetic and thermodynamic parameters evaluated using the adsorption equilibrium data at varying temperatures. Higher adsorption rates were achieved at acidic to neutral pH ranges, with the sorption kinetic data showing a good fit to the pseudo second order rate equation and the Langmuir adsorption isotherm model for both E2 and EE2. The Gibbs free energy were -16.68 kJ/mol and -17.34 kJ/mol for E2 and EE2 respectively. The values of enthalpy for both E2 (84.50 kJ/mol) and EE2 (90 kJ/mol) indicated a chemical nature of the sorption process. Both the isotherm and thermodynamic data obtained all supported the mechanism of adsorption of E2 and EE2 to be mainly chemisorptions supported by some physical attractions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.