Pereira Filho, Augusto J., Richard E. Carbone, John E. Janowiak, Phillip Arkin, Robert Joyce, Ricardo Hallak, and Camila G.M. Ramos, 2010. Satellite Rainfall Estimates Over South America – Possible Applicability to the Water Management of Large Watersheds. Journal of the American Water Resources Association (JAWRA) 46(2):344‐360. DOI: 10.1111/j.1752‐1688.2009.00406.x Abstract: This work analyzes high‐resolution precipitation data from satellite‐derived rainfall estimates over South America, especially over the Amazon Basin. The goal is to examine whether satellite‐derived precipitation estimates can be used in hydrology and in the management of larger watersheds of South America. High spatial‐temporal resolution precipitation estimates obtained with the CMORPH method serve this purpose while providing an additional hydrometeorological perspective on the convective regime over South America and its predictability. CMORPH rainfall estimates at 8‐km spatial resolution for 2003 and 2004 were compared with available rain gauge measurements at daily, monthly, and yearly accumulation time scales. The results show the correlation between satellite‐derived and gauge‐measured precipitation increases with accumulation period from daily to monthly, especially during the rainy season. Time‐longitude diagrams of CMORPH hourly rainfall show the genesis, strength, longevity, and phase speed of convective systems. Hourly rainfall analyses indicate that convection over the Amazon region is often more organized than previously thought, thus inferring that basin scale predictions of rainfall for hydrological and water management purposes have the potential to become more skillful. Flow estimates based on CMORPH and the rain gauge network are compared to long‐term observed average flow. The results suggest this satellite‐based rainfall estimation technique has considerable utility. Other statistics for monthly accumulations also suggest CMORPH can be an important source of rainfall information at smaller spatial scales where in situ observations are lacking.
The Metropolitan Area of São Paulo (MASP) is one of the most populated regions of the planet with one of the largest impervious regions as well. This research work aims to characterize MASP heat island (HI) effect and its interaction with the local sea breeze (SB) inflow in rainfall amounts and deep convection. The combined SB-HI produces direct circulation over the MASP and produces severe weather and socioeconomic impacts. All SB-HI episodes between 2005 and 2008 are identified and analyzed with surface and upper air measurements, weather radar, and satellite data. The current work indicates that intense SB-HI episodes are related to air and dew point temperatures above 30 ∘ C and 20 ∘ C, respectively, right after the passage of the SB front over MASP. Results indicate that the precipitation related to SB-HI episodes is up to 600 mm or about four times higher than that in rural or less urbanized areas in its surroundings. Measurements indicate that 74% of SB-HI episodes are related to NW winds in earlier afternoon hours. Moving cold fronts in southern Brazil tend to intensify the SB-HI circulation in MASP. A conceptual model of these patterns is presented in this paper.
Simultaneous observations of an optical and an impact type disdrometer and their application in radar rainfall estimation are evaluated. The disdrometers and two collocated rain gauges were operated in the southwest Amazon region of Brazil in 1999 as part of a NASA Tropical Rainfall Measuring Mission (TRMM) field campaign and the hydro‐meteorological component of the Large Scale Biosphere–Atmosphere Experiment (LBA). During the experiment, we observed large drops with diameters greater than 5 mm. These large drops were not adequately detected by the impact disdrometer and resulted in differences in drop size distribution and integral rain parameters derived from the two sensors. Considering coincident observations, we calculated that the impact disdrometer recorded about 11% lower rainfall accumulations than the optical disdrometer. In addition, radar rainfall algorithms, which we derived from the impact and optical disdrometer measurements, showed instrument dependency. Out of four radar rainfall algorithms that we considered, rain rate derived from specific differential phase has the least dependency, while the rain rate derived from reflectivity at horizontal polarization and differential reflectivity combined exhibited the largest. We also observed the characteristics of rainfall and drop size distribution in two distinct wind regimes present during the TRMM–LBA field campaign. Rain was heavier in the easterly regime, with more large drops being present.
Foram analisadas características da precipitação estimada a partir de 145.194 campos de refletividade, de um total de 827 dias entre 1998 e 2003, obtidos do Radar Meteorológico de São Paulo (RSP). Os eventos foram classificados de acordo com intensidades de precipitação; em Convectivos (EC) e Estratiformes (EE). Quanto à morfologia, cinco tipos de sistemas foram identificados; Convecção Isolada (CI), Brisa Marítima (BM), Linhas de Instabilidade (LI), Bandas Dispersas (BD) e Frentes Frias (FF). Eventos convectivos dominam na primavera e verão e estratiformes no outono e inverno. A CI e a BM tiveram maiores picos de atuação entre outubro e março enquanto as FF de abril a setembro. BD atuam durante todo o ano e as LI só não foram observadas nos meses de junho e julho. Uma comparação pontual entre a precipitação medida pela telemetria e estimada com o radar foi realizada e, mostrou haver, na maioria dos casos, um viés positivo do RSP, para acumulações de 10, 30 e 60 minutos. Com o objetivo de integrar as estimativas de precipitação do radar com as medidas da rede telemétrica, por meio de uma análise objetiva estatística, foram obtidas dos campos de precipitação do radar as estruturas das correlações espaciais em função da distância para acumulações de chuva de 15, 30, 60 e 120 minutos para os cinco tipos de sistemas precipitantes que foram caracterizados. As curvas das correlações espaciais médias de todos os eventos de precipitação de cada sistema foram ajustadas por funções polinomiais de sexta ordem. Os resultados indicam diferenças significativas na estrutura espacial das correlações entre os sistemas precipitantes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.