Recent investigations have demonstrated that elevated serum retinol-binding protein 4 (RBP4) secreted from adipose tissue plays a role in the development of systemic insulin resistance, and lowering RBP4 improves insulin sensitivity. These observations provide a rationale for the development of new antidiabetic agents aimed at reducing serum RBP4 concentrations. In this study, we sought to determine whether retinoic acid (RA) administration decreases serum RBP4 and suppresses insulin resistance in diabetic ob/ob mice. All-trans RA [100 mug/(moused) in corn oil] was administered by stomach intubation to a group of ob/ob mice, with the control group receiving the vehicle for 16 d. Body weight and food intake were monitored. Glucose and insulin tolerance tests were performed. We quantified serum RBP4 and retinol by Western blotting and HPLC, respectively. RA treatment reduced body weight (P < 0.05), basal serum glucose (P < 0.001), serum retinol (P < 0.01), and RBP4 (P < 0.05). It improved insulin sensitivity and decreased the retinol:RBP4 ratio (P < 0.05). These studies suggest that RA is an effective antidiabetic agent that could be considered in the treatment of type 2 diabetes.
Vitamin A and its analogs (retinoids) regulate adipocyte differentiation. Recent investigations have demonstrated a relationship among retinoids, retinoid-binding-protein 4 (RBP4) synthesized in adipose tissues, and insulin-resistance status. In this study, we measured retinoid levels and analyzed the expression of retinoid homeostatic genes associated with retinol uptake, esterification, oxidation, and catabolism in subcutaneous (Sc) and visceral (Vis) mouse fat tissues. Both Sc and Vis depots were found to contain similar levels of all-trans retinol. A metabolite of retinol with characteristic ultraviolet absorption maxima for 9-cis retinol was observed in these 2 adipose depots, and its level was 2-fold higher in Sc than in Vis tissues. Vis adipose tissue expressed significantly higher levels of RBP4, CRBP1 (intracellular retinol-binding protein 1), RDH10 (retinol dehydrogenase), as well as CYP26A1 and B1 (retinoic acid (RA) hydroxylases). No differences in STRA6 (RBP4 receptor), LRAT (retinol esterification), CRABP1 and 2 (intracellular RA-binding proteins), and RALDH1 (retinal dehydrogenase) mRNA expressions were discerned in both fat depots. RALDH1 was identified as the only RALDH expressed in both Sc and Vis adipose tissues. These results indicate that Vis is more actively involved in retinoid metabolism than Sc adipose tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.