Food sharing is vital for a large number of species, either solitary or social, and is of particular importance within highly integrated societies, such as in colonial organisms and in social insects. Nevertheless, the mechanisms that govern the distribution of food inside a complex organizational system remain unknown.Using scintigraphy, a method developed for medical imaging, we were able to describe the dynamics of food-flow inside an ant colony. We monitored the sharing process of a radio-labelled sucrose solution inside a nest of Formica fusca. Our results show that, from the very first load that enters the nest, food present within the colony acts as negative feedback to entering food. After one hour of the experiments, 70% of the final harvest has already entered the nest. The total foraged quantity is almost four times smaller than the expected storage capacity. A finer study of the spatial distribution of food shows that although all ants have been fed rapidly (within 30 minutes), a small area representing on average 8% of the radioactive surface holds more than 25% of the stored food. Even in rather homogeneous nests, we observed a strong concentration of food in few workers. Examining the position of these workers inside the nest, we found heavily loaded ants in the centre of the aggregate. The position of the centre of this high-intensity radioactive surface remained stable for the three consecutive hours of the experiments.We demonstrate that the colony simultaneously managed to rapidly feed all workers (200 ants fed within 30 minutes) and build up food stocks to prevent food shortage, something that occurs rather often in changing environments. Though we expected the colony to forage to its maximum capacity, the flow of food entering the colony is finely tuned to the colony's needs. Indeed the food-flow decreases proportionally to the food that has already been harvested, liberating the work-force for other tasks.
In social insects, the foraging activity usually increases with the length of food deprivation. In Lasius niger, a mass-recruiting ant species, the foraging adjustment to the level of food deprivation is regulated by the scout that fed at the food source and by the response of the nestmates to signals performed by the scout inside the nest. In this study, we look at the role of these direct interactions (antennations or trophallaxes) and indirect interactions (pheromonal emission) and how they are influenced by the level of food deprivation. At the beginning of recruitment, the relative number of nestmates leaving the nest to forage increases with the level of deprivation. The nestmates' propensity to exit the nest is not influenced by a previous trophallactic and/or antennal contact with a scout. Our results strongly suggest that the exit of nestmates is triggered by a chemical signal emitted by a scout. Deprivation lowers the response threshold of nestmates to this chemical signal resulting in a more important exit from the nest. Surprisingly, 27% of starved nestmates that receive food from the scout relay the information by depositing a chemical signal before having discovered and drunk the food source. Both phenomena boost the recruitment process. Though successful foragers returning to the nest have a significant role in the recruitment to the food source, we observed that the response of the nestmates inside the nest also greatly influence regulation of the foraging activity.
In this paper, we present an approach to designing decentralized robot control policies that mimic certain microscopic and macroscopic behaviors of ants performing collective transport tasks. In prior work, we used a stochastic hybrid system model to characterize the observed team dynamics of ant group retrieval of a rigid load. We have also used macroscopic population dynamic models to design enzyme-inspired stochastic control policies that allocate a robotic swarm around multiple boundaries in a way that is robust to environmental variations. Here, we build on this prior work to synthesize stochastic robot attachment-detachment policies for tasks in which a robotic swarm must achieve non-uniform spatial distributions around multiple loads and transport them at a constant velocity. Three methods are presented for designing robot control policies that replicate the steady-state distributions, transient dynamics, and fluxes between states that we have observed in ant populations during group retrieval. The equilibrium population matching method (EPMM) can be used to achieve a desired transport team composition as quickly as possible; the transient matching method (TMM) can control the transient population dynamics of the team while driving it to the desired composition; and the rate matching method (RMM) regulates the rates at which robots join and leave a load during transport. We validate our model predictions in an agent-based simulation, verify that each controller design method produces successful transport of a load at a regulated velocity, and compare the advantages and disadvantages of each method.
Working together allows social animals to accomplish tasks beyond the abilities of solitary individuals, but the benefits of cooperation must be balanced with the costs of coordination. Many ant species form cooperative groups to transport items too large for a single ant. However, transport by groups is often slower and less efficient than that of lone ants, for reasons that remain poorly understood. We tested the hypothesis that groups are slower when porters must encircle the load to carry it, because this arrangement places ants in a variety of postures relative to the load and the direction of travel. Porters may therefore have difficulty maximizing individual forces and aligning them with those of other group members. Experiments on the desert ant Novomessor cockerelli, an adept cooperative transporter, did not support this hypothesis. Groups ranging in size from one to four ants were induced to carry loads such that all porters were aligned with one another. Load weight was adjusted so that all porters pulled the same per capita weight, but lone porters were nonetheless faster than groups of any size. As group size increased, porters persisted in carrying the load for longer periods before letting go. We used simulations to explore a scenario in which ants vary in their intrinsic speed and the group's speed is limited by that of its slowest member. This proposed mechanism is analogous to other social groups where group efficiency is determined by the weakest link. We discuss how interactions among porters, mediated by the load itself, might explain such a constraint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.