Behavioral correlations stretching over time are an essential but often neglected aspect of interactions among animals. These correlations pose a challenge to current behavioral-analysis methods that lack effective means to analyze complex series of interactions. Here we show that non-invasive information-theoretic tools can be used to reveal communication protocols that guide complex social interactions by measuring simultaneous flows of different types of information between subjects. We demonstrate this approach by showing that the tandem-running behavior of the ant Temnothorax rugatulus and that of the termites Coptotermes formosanus and Reticulitermes speratus are governed by different communication protocols. Our discovery reconciles the diverse ultimate causes of tandem running across these two taxa with their apparently similar signaling mechanisms. We show that bidirectional flow of information is present only in ants and is consistent with the use of acknowledgement signals to regulate the flow of directional information.
1. Search theory predicts that animals evolve efficient movement patterns to enhance encounter rates with specific targets. The optimal movements vary with the surrounding environments, which may explain the observation that animals often switch their movement patterns depending on conditions. However, the effectiveness of behavioural change during search is rarely evaluated because it is difficult to examine the actual encounter dynamics. 2. Here we studied how partner-seeking termites update their search strategies depending on the local densities of potential mates. After a dispersal flight, termites drop their wings and walk to search for a mate; when a female and a male meet, they form a female-led tandem pair and search for a favourable nesting site. If a pair is separated, they have two search options-reunite with their stray partner, or seek a new partner. We hypothesized that the density of individuals affects separation-reunion dynamics and thus the optimal search strategy. 3. We observed the searching process across different densities and found that termite pairs were often separated but obtained a new partner quickly at high mate density. After separation, while females consistently slowed down, males increased their speed according to the density. Under high mate density, separated males obtained a partner earlier than females, who do not change movement with density. 4. Our data-based simulations confirmed that the observed behavioural change by males contributes to enhancing encounters. Males at very low mate densities did best to move slowly and thereby reduce the risk of missing their stray partner, who is the only available mate. On the other hand, males that experienced high mate densities did better in mating encounters by moving fast because the risk of isolation is low, and they must compete with other males to find a partner. 5. These results demonstrate that termite males adaptively update their search strategy depending on conditions. Understanding the encounter dynamics experienced by animals is key to connecting the empirical work to the idealized search processes of theoretical studies.
Task allocation is a central challenge of collective behavior in a variety of group-living species, and this is particularly the case for the allocation of social insect workers for group defense. In social insects, both benefits and considerable costs are associated with the production of specialized soldiers. We asked whether colonies mitigate costs of production of specialized soldiers by simultaneously employing behavioral flexibility in nonspecialist workers that can augment defense capabilities at short time scales. We studied colonies of the stingless bee Tetragonisca angustula, a species that has 2 discrete nest-guarding tasks typically performed by majors: hovering guarding and standing guarding. Majors showed age polyethism across nest-guarding tasks, first hovering and then changing to the task of standing guarding after 1 week. Colonies were also able to reassign minors to guarding tasks when majors were experimentally removed. Replacement guards persisted in nest defense tasks until colonies produced enough majors to return to their initial state. Tetragonisca angustula colonies thus employed a coordinated set of specialization strategies in nest defense: morphologically specialized soldiers, age polyethism among soldiers within specific guarding tasks, and rapid flexible reallocation of nonspecialists to guarding during soldier loss. This mixed strategy achieves the benefits of a highly specialized defensive force while maintaining the potential for rapid reinforcement when soldiers are lost or colonies face unexpectedly intense attack.
Working together allows social animals to accomplish tasks beyond the abilities of solitary individuals, but the benefits of cooperation must be balanced with the costs of coordination. Many ant species form cooperative groups to transport items too large for a single ant. However, transport by groups is often slower and less efficient than that of lone ants, for reasons that remain poorly understood. We tested the hypothesis that groups are slower when porters must encircle the load to carry it, because this arrangement places ants in a variety of postures relative to the load and the direction of travel. Porters may therefore have difficulty maximizing individual forces and aligning them with those of other group members. Experiments on the desert ant Novomessor cockerelli, an adept cooperative transporter, did not support this hypothesis. Groups ranging in size from one to four ants were induced to carry loads such that all porters were aligned with one another. Load weight was adjusted so that all porters pulled the same per capita weight, but lone porters were nonetheless faster than groups of any size. As group size increased, porters persisted in carrying the load for longer periods before letting go. We used simulations to explore a scenario in which ants vary in their intrinsic speed and the group's speed is limited by that of its slowest member. This proposed mechanism is analogous to other social groups where group efficiency is determined by the weakest link. We discuss how interactions among porters, mediated by the load itself, might explain such a constraint.
A holistic understanding of superorganism biology requires study of colony sociometry, or the quantitative relationships among growth, nest architecture, morphology, and behavior. For ant colonies that obligately nest within plant hosts, their sociometry is likely intertwined with the plant, which has implications for the evolution, strength, and stability of the mutualism. In the Azteca-Cecropia mutualism, plants provide ants with food rewards and hollow stems for nesting in return for protection from herbivores. Several interesting questions arise when considering ant-plant sociometry: are colony growth and plant growth synchronized? How do colonies distribute themselves within the stem of their host plant? How do plant traits influence worker morphology? How is collective personality related to tree structure, nest organization, and worker morphology? To address these questions, we investigated patterns within and relationships among five major sociometric categories of colonies in the field – plant traits, colony size, nest organization, worker morphology, and collective personality. We found that colony sociometry was intimately intertwined with host plant traits. Colony and plant growth rates were synchronized, suggesting that positive feedback between plant and colony growth stabilizes the mutualism. The colony’s distribution inside the host tree tended to follow leaf growth, with most workers, brood, and the queen in the top half of the tree. Worker morphology correlated with plant size instead of colony size or age, which suggests that plant traits influence worker development. Colony personality was independent of colony distribution and tree structure but may correlate with worker size such that colonies with smaller, less variable workers had more aggressive personalities. This study provides insights into how ant-plant structural relationships may contribute to plant protection and the strength of mutualisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.