Observations from 1 km beneath to 25 km above the sea surface reveal the complex interactions in Indian Ocean westerly wind bursts associated with the Madden-Julian oscillation.
Mesoscale eddies, energetic vortices covering nearly a third of the ocean surface at any one time, modulate the spatial and temporal evolution of the mixed layer. We present a global analysis of concurrent satellite observations of mesoscale eddies with hydrographic profiles by autonomous Argo floats, revealing rich geographic and seasonal variability in the influence of eddies on mixed layer depth. Anticyclones deepen the mixed layer depth, whereas cyclones thin it, with the magnitude of these eddy‐induced mixed layer depth anomalies being largest in winter. Eddy‐centric composite averages reveal that the largest anomalies occur at the eddy center and decrease with distance from the center. Furthermore, the extent to which eddies modulate mixed layer depth is linearly related to the sea surface height amplitude of the eddies. Finally, large eddy‐mediated mixed layer depth anomalies are more common in anticyclones when compared to cyclones. We present candidate mechanisms for this observed asymmetry.
The daily evolution of temperature, stratification, and turbulence in the diurnal warm layer is described from time series measurements at low to moderate winds and strong insolation in the equatorial Indian Ocean. At 2.0-m depth, turbulence dissipation rates (ε) decreased by two orders of magnitude over 1–2 h immediately after sunrise, initiated by stratification caused by penetrating solar radiation prior to the change in sign of net surface heat flux from cooling to warming. Decaying turbulence preceded a period of rapid growth, in which ε increased by two orders of magnitude over a few hours, and following which ε approached a daytime period of near-steady state. Decay and growth rates predicted by a simplified turbulence model are consistent with those observed. During the daytime period of near-steady state, asymmetric temperature ramps were associated with enhanced ε, supporting the interpretation that this period represents a balance between buoyancy and shear production associated with a shear-driven response to trapping of momentum within the diurnal warm layer.
Freshwater lenses (FWLs) deposited by rain exhibit local anomalies in surface salinity and temperature. The resulting patchiness in near‐surface density and sea surface temperature influence upper ocean dynamics and air‐sea fluxes of heat. Understanding lens formation and evolution has been a focus of recent observational and modeling efforts. The work presented here integrates near‐surface ocean and atmosphere time series with remote sensing of sea surface disturbances (X‐band radar) to describe properties and kinematics of FWLs in the equatorial Indian Ocean. Twenty‐eight FWLs were observed with diverse temperature‐salinity properties and structure. Fresh salinity anomalies were as large as −1.35 psu at 3 m depth. Associated temperature anomalies ranged from −0.80 to +0.59°C. Ship‐based radar imagery allowed quantification of propagation speeds of 10 FWL fronts. In the reference frame of the moving fluid, the observed speeds are consistent with the linear long wave speed of g′h. These results offer a novel perspective on the evolution of FWLs as gravity currents whose dynamics need to be properly accounted for to assess lens longevity, including persistence of salinity and temperature anomalies, as well as influences on air‐sea interaction.
A new autonomous turbulence profiling float has been designed, built and tested in field trials off Oregon. Flippin’ χSOLO (FχS) employs a SOLO-II buoyancy engine that not only changes but also shifts ballast to move the center of mass to positions on either side of the center of buoyancy thus causing FχS to flip. FχS is outfitted with a full suite of turbulence sensors—two shear probes, two fast thermistors and pitot tube as well as a pressure sensor and 3-axis linear accelerometers. FχS descends and ascends with turbulence sensors leading, thereby permitting measurement through the sea surface. The turbulence sensors are housed antipodal from communication antennae so as to eliminate flow disturbance. By flipping at the sea surface, antennae are exposed for communications. The mission of FχS is to provide intensive profiling measurements of the upper ocean from 240m and through the sea surface, particularly during periods of extreme surface forcing. While surfaced, accelerometers provide estimates of wave height spectra and significant wave height. From day field trials, here we evaluate (i) the statistics from two FχS units and our established shipboard profiler, Chameleon, and (ii) FχS-based wave statistics by comparison to a nearby NOAA wave buoy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.