This work is linked to the future Indian–French high spatio-temporal TRISHNA (Thermal infraRed Imaging Satellite for High-resolution natural resource Assessment) mission, which includes shortwave and thermal infrared bands, and is devoted amongst other things to the monitoring of urban heat island events. In this article, the performance of seven empirical thermal unmixing techniques applied on simulated TRISHNA satellite images of an urban scenario is studied across spatial resolutions. For this purpose, Top Of Atmosphere (TOA) images in the shortwave and Thermal InfraRed (TIR) ranges are constructed at different resolutions (20 m, 40 m, 60 m, 80 m, and 100 m) and according to TRISHNA specifications (spectral bands and sensor properties). These images are synthesized by correcting and undersampling DESIREX 2008 Airborne Hyperspectral Scanner (AHS) images of Madrid at 4 m resolution. This allows to compare the Land Surface Temperature (LST) retrieval of several unmixing techniques applied on different resolution images, as well as to characterize the evolution of the performance of each technique across resolutions. The seven unmixing techniques are: Disaggregation of radiometric surface Temperature (DisTrad), Thermal imagery sHARPening (TsHARP), Area-To-Point Regression Kriging (ATPRK), Adaptive Area-To-Point Regression Kriging (AATPRK), Urban Thermal Sharpener (HUTS), Multiple Linear Regressions (MLR), and two combinations of ground classification (index-based classification and K-means classification) with DisTrad. Studying these unmixing techniques across resolutions also allows to validate the scale invariance hypotheses on which the techniques hinge. Each thermal unmixing technique has been tested with several shortwave indices, in order to choose the best one. It is shown that (i) ATPRK outperforms the other compared techniques when characterizing the LST of Madrid, (ii) the unmixing performance of any technique is degraded when the coarse spatial resolution increases, (iii) the used shortwave index does not strongly influence the unmixing performance, and (iv) even if the scale-invariant hypotheses behind these techniques remain empirical, this does not affect the unmixing performances within this range of resolutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.