Background: Local recurrences of glioblastoma (GBM) after heavy standard treatments remain frequent and lead to a poor prognostic. Major challenges are the infiltrative part of the tumor tissue which is the ultimate cause of recurrence. The therapeutic arsenal faces the difficulty of eradicating this infiltrating part of the tumor tissue while increasing the targeting of tumor and endogenous stromal cells such as angiogenic endothelial cells. In this aim, neuropilin-1 (NRP-1), a transmembrane receptor mainly overexpressed by endothelial cells of the tumor vascular system and associated with malignancy, proliferation and migration of GBM, highlighted to be a relevant molecular target to promote the anti-vascular effect of photodynamic therapy (VTP). Methods: The multiscale selectivity was investigated for KDKPPR peptide moiety targeting NRP-1 and a porphyrin molecule as photosensitizer (PS), both grafted onto original AGuIX design nanoparticle. AGuIX nanoparticle, currently in Phase II clinical trials for the treatment of brain metastases with radiotherapy, allows to achieve a real-time magnetic resonance imaging (MRI) and an accumulation in the tumor area by EPR (enhanced permeability and retention) effect. Using surface-plasmon resonance (SPR), we evaluated the affinities of KDKPPR and scramble free peptides, and also peptides-conjugated AGuIX nanoparticles to recombinant rat and human NRP-1 proteins. For in vivo selectivity, we used a cranial window model and parametric maps obtained from T2*-weighted perfusion MRI analysis. Results: The photophysical characteristics of the PS and KDKPPR molecular affinity for recombinant human NRP-1 proteins were maintained after the functionalization of AGuIX nanoparticle with a dissociation constant of 4.7 μM determined by SPR assays. Cranial window model and parametric maps, both revealed a prolonged retention in the vascular system of human xenotransplanted GBM. Thanks to the fluorescence of porphyrin by noninvasive imaging and the concentration of gadolinium evaluated after extraction of organs, we checked the absence of nanoparticle in the brains of tumor-free animals and highlighted elimination by renal excretion and hepatic metabolism. Conclusion: Post-VTP follow-ups demonstrated promising tumor responses with a prolonged delay in tumor growth accompanied by a decrease in tumor metabolism.
Nucleic acid aptamers are molecules that are being used in a large number of biomedical applications. Aptamers have the properties to bind to a wide range of molecules with high specificity and affinity for their target. These properties together with their small size and their ease of synthesis make them very attractive and promising for targeting diseases and therapeutic applications. Aptamers can serve as cancer diagnostic tools by detecting specific biomarkers, circulating cancer cells or imaging diseased tissue. On the other hand, aptamers can be used as therapeutic agents due to their potential antagonist activity, or as targeting agents. Therefore, they can be designed to deliver antitumor molecules such as chemotherapeutic drugs, siRNA or photodynamic therapy sensitizers to diseased tissues. Attempts are also made to synthesize aptamers-targeted nanoplatforms capable to ferry cargo and load onto them both imaging and therapeutic functions creating so called nanotheragnostics agents. In the future, its seems likely that aptamers will play an important role in diagnosis and treatment of several pathologies including cancer.
Photodynamic therapy (PDT) is currently used as a minimally invasive therapeutic modality for cancer. Whereas antitumor treatment regimens require lethal doses of photosensitizer and light, sublethal doses may have immunomodulatory effects, antibacterial action and/or regenerative properties. A growing body of evidence now indicates that non-lethal PDT doses can alleviate inflammation or treat established soft-tissue infections in various murine models of arthritis, experimental encephalomyelitis, inflammatory bowel disease and chronic skin ulcers. Furthermore, PDT is already used in clinical application and clinical trial for the treatment of psoriasis, chronic wounds and periodontitis in humans. Sublethal PDT should be regarded as a new viable option for the treatment of inflammatory conditions.
BackgroundTracers triggering αvβ3 integrins, such as certain RGD-containing peptides, were found promising in previous pilot studies characterizing high-grade gliomas. However, only limited comparisons have been performed with current PET tracers. This study aimed at comparing the biodistribution of 18F-fluorodeoxyglucose (18F-FDG) with that of 68Ga-NODAGA-RGD, an easily synthesized monomeric RGD compound with rapid kinetics, in two different rodent models of engrafted human glioblastoma.MethodsNude rodents bearing human U87-MG glioblastoma tumor xenografts in the flank (34 tumors in mice) or in the brain (5 tumors in rats) were analyzed. Kinetics of 68Ga-NODAGA-RGD and of 18F-FDG were compared with PET imaging in the same animals, along with additional autohistoradiographic analyses and blocking tests for 68Ga-NODAGA-RGD.ResultsBoth tracers showed a primary renal route of clearance, although with faster clearance for 68Ga-NODAGA-RGD resulting in higher activities in the kidneys and bladder. The tumor activity from 68Ga-NODAGA-RGD, likely corresponding to true integrin binding (i.e., suppressed by co-injection of a saturating excess of unlabeled RGD), was found relatively high, but only at the 2nd hour following injection, corresponding on average to 53% of total tumor activity. Tumor uptake of 68Ga-NODAGA-RGD decreased progressively with time, contrary to that of 18F-FDG, although 68Ga-NODAGA-RGD exhibited 3.4 and 3.7-fold higher tumor-to-normal brain ratios on average compared to 18F-FDG in mice and rat models, respectively. Finally, ex-vivo analyses revealed that the tumor areas with high 68Ga-NODAGA-RGD uptake also exhibited the highest rates of cell proliferation and αv integrin expression, irrespective of cell density.Conclusions68Ga-NODAGA-RGD has a high potential for PET imaging of glioblastomas, especially for areas with high integrin expression and cell proliferation, although PET recording needs to be delayed until the 2nd hour following injection in order to provide sufficiently high integrin specificity.Electronic supplementary materialThe online version of this article (10.1186/s13550-018-0405-5) contains supplementary material, which is available to authorized users.
LDPDT with Foslip could be considered as a novel treatment modality to prevent colorectal carcinogenesis in patients with inflammatory bowel disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.