Soil erosion by water is one of the main environmental problems of the tropical mountains of Central America. The fragility of these areas, the significant degree of human population pressure exerted and changes in traditional farming systems all contribute to the current state of degradation. In this study, we compare two types of agricultural management (conventional tillage with traditional ploughing and no‐tillage with a digging stick) and analyse the influence of land slope, the management of vegetation cover, and various soil features and properties related to erosion in fields dedicated to the cultivation of beans (Phaseolus vulgaris L.) to determine the erosion thresholds. The study area was located in the hills around El Cuá, in northern Nicaragua. The results showed the system of no‐tillage (NT) to be more effective at controlling erosion than conventional tillage (CT), such that 28.7% less land was affected by erosion. Erosion in plots under CT did not present any statistically significant relationship with the factors analysed. Conversely, the erosion in the plots under NT was significantly related to the coverage of vegetation residues, and we calculated an erosion threshold of 40% of the level of vegetation coverage, which significantly reduces erosion.
Oilseed rape (
Brassica napus
L.) is the third largest oil crop worldwide. Like other crops, oilseed rape faces unfavorable environmental conditions resulting from multiple and combined actions of abiotic and biotic constraints that occur throughout the growing season. In particular drought severely reduces seed yield but also impacts seed quality in oilseed rape. In addition, clubroot disease, caused by the pathogen
Plasmodiophora brassicae
, limits the yield of the oilseed rape crops grown in infected areas. Clubroot induces swellings or galls on the roots that decrease the flow of water and nutrients within the plant. Furthermore, combinations of different stresses lead to complex plant responses that can not be predicted by the simple addition of individual stress responses. Indeed, an abiotic constraint can either reduce or stimulate the plant response to a pathogen or pest. Transcriptome datasets from different conditions are key resources to improve our knowledge of environmental stress-resistance mechanisms in plant organs. Here, we describe a RNA-seq dataset consisting of 72 samples of immature
B. napus
seeds from plants grown either under drought, infected with
P. brassicae
, or a combination of both stresses. A total of 67.6 Gb of transcriptome paired-end reads were filtered, mapped onto the
B. napus
reference genome Darmor-
bzh
and used for identification of differentially expressed genes and gene ontology enrichment. The raw reads are available under accession PRJNA738318 at NCBI Sequence Read Archive (SRA) repository. The dataset is a resource for the scientific community exploring seed plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.