vs 5.79±1.97·mW·g-1 , respectively). Cardiac morphology was visualised in vivo by Doppler echography on anaesthetised individual fish and revealed that poor swimmers had a significantly more rounded ventricle (reduced ventricle length to height ratio) compared with good swimmers, which in turn was correlated with fish condition factor. These results provide clear evidence that maximum cardiac performance is linked to AMR and U crit and indicate that a simple screening test can distinguish between rainbow trout with lower active metabolic rate, U crit , maximal cardiac pumping capacity and a more rounded ventricular morphology. These distinguishing traits may have been retained for 9 months despite a common growing environment and growth.
Cardiac Na+ channels encoded by the SCN5A gene are essential for initiating heart beats and maintaining a regular heart rhythm. Mutations in these channels have recently been associated with atrial fibrillation, ventricular arrhythmias, conduction disorders, and dilated cardiomyopathy (DCM).We investigated a young male patient with a mixed phenotype composed of documented conduction disorder, atrial flutter, and ventricular tachycardia associated with DCM. Further family screening revealed DCM in the patient's mother and sister and in three of the mother's sisters. Because of the complex clinical phenotypes, we screened SCN5A and identified a novel mutation, R219H, which is located on a highly conserved region on the fourth helix of the voltage sensor domain of Nav1.5. Three family members with DCM carried the R219H mutation.The wild-type (WT) and mutant Na+ channels were expressed in a heterologous expression system, and intracellular pH (pHi) was measured using a pH-sensitive electrode. The biophysical characterization of the mutant channel revealed an unexpected selective proton leak with no effect on its biophysical properties. The H+ leak through the mutated Nav1.5 channel was not related to the Na+ permeation pathway but occurred through an alternative pore, most probably a proton wire on the voltage sensor domain.We propose that acidification of cardiac myocytes and/or downstream events may cause the DCM phenotype and other electrical problems in affected family members. The identification of this clinically significant H+ leak may lead to the development of more targeted treatments.
Cardiac arrhythmias, which occur in a wide variety of conditions where intracellular calcium is increased, have been attributed to the activation of a transient inward current (I ti Channel activity was reduced in the presence of 0.5 mM ATP or 10 µM glibenclamide on the cytoplasmic side to 22.1 ± 16.8 and 28.5 ± 8.6%, respectively, of control. It was also inhibited by 0.1 mM flufenamic acid. The channel shares several properties with TRPM4b and TRPM5, two members of the 'TRP melastatin' subfamily. In conclusion, the NSC Ca channel is a serious candidate to support the delayed after-depolarizations observed in [Ca 2+ ] overload and thus may be implicated in the genesis of arrhythmias.
Key point• Fibroblasts play a major role in heart physiology. In pathological conditions, they can lead to cardiac fibrosis when they differentiate into myofibroblasts.• This differentiated status is associated with changes in expression profile leading to neo-expression of proteins such as ionic channels.• The present study investigates electrophysiological changes associated with fibroblast differentiation focusing on voltage-gated sodium channels in human atrial fibroblasts and myofibroblasts.• We show that human atrial fibroblast differentiation in myofibroblasts is associated with de novo expression of voltage gated sodium current. Multiple arguments support that this current is predominantly supported by the Na v 1.5 α-subunit which may generate a persistent sodium entry into myofibroblasts.• Our data revealed that Na v 1.5 α-subunit expression is not restricted to cardiac myocytes within the atrium. Since fibrosis is one of the fundamental mechanisms implicated in atrial fibrillation, it is of great interest to investigate how this channel could influence myofibroblasts function.Abstract Fibroblasts play a major role in heart physiology. They are at the origin of the extracellular matrix renewal and production of various paracrine and autocrine factors. In pathological conditions, fibroblasts proliferate, migrate and differentiate into myofibroblasts leading to cardiac fibrosis. This differentiated status is associated with changes in expression profile leading to neo-expression of proteins such as ionic channels. The present study investigates further electrophysiological changes associated with fibroblast differentiation focusing on the activity of voltage-gated sodium channels in human atrial fibroblasts and myofibroblasts. Using the patch clamp technique we show that human atrial myofibroblasts display a fast inward voltage gated sodium current with a density of 13.28 ± 2.88 pA pF −1 whereas no current was detectable in non-differentiated fibroblasts. Quantitative RT-PCR reveals a large amount of transcripts encoding the Na v 1.5 α-subunit with a fourfold increased expression level in myofibroblasts when compared to fibroblasts. Accordingly, half of the current was blocked by 1 μM of tetrodotoxin and immunocytochemistry experiments reveal the presence of Na v 1.5 proteins. Overall, this current exhibits similar biophysical characteristics to sodium currents found in cardiac myocytes except for the window current that is enlarged for potentials between −100 and −20 mV. Since fibrosis is one of the fundamental mechanisms implicated in atrial fibrillation, it is of great interest to investigate how this current could influence myofibroblast properties. Moreover, since several Na v 1.5 mutations are related to cardiac pathologies, this study offers a new avenue on the fibroblasts involvement of these mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.