Natural products (NPs) are often regarded as sources of drugs or drug leads or simply as a "source of inspiration" for the discovery of novel drugs. We have built the Northern African Natural Products Database (NANPDB) by collecting information on ∼4500 NPs, covering literature data for the period from 1962 to 2016. The data cover compounds isolated mainly from plants, with contributions from some endophyte, animal (e.g., coral), fungal, and bacterial sources. The compounds were identified from 617 source species, belonging to 146 families. Computed physicochemical properties, often used to predict drug metabolism and pharmacokinetics, as well as predicted toxicity information, have been included for each compound in the data set. This is the largest collection of annotated natural compounds produced by native organisms from Northern Africa. While the database includes well-known drugs and drug leads, the medical potential of a majority of the molecules is yet to be investigated. The database could be useful for drug discovery efforts, analysis of the bioactivity of selected compounds, or the discovery of synthesis routes toward secondary metabolites. The current version of NANPDB is available at http://african-compounds.org/nanpdb/ .
Cytochrome bd quinol:O2 oxidoreductases are respiratory terminal oxidases so far only identified in prokaryotes, including several pathogenic bacteria. Escherichia coli contains two bd oxidases of which only the bd-I type is structurally characterized. Here, we report the structure of the Escherichia coli cytochrome bd-II type oxidase with the bound inhibitor aurachin D as obtained by electron cryo-microscopy at 3 Å resolution. The oxidase consists of subunits AppB, C and X that show an architecture similar to that of bd-I. The three heme cofactors are found in AppC, while AppB is stabilized by a structural ubiquinone-8 at the homologous positions. A fourth subunit present in bd-I is lacking in bd-II. Accordingly, heme b595 is exposed to the membrane but heme d embedded within the protein and showing an unexpectedly high redox potential is the catalytically active centre. The structure of the Q-loop is fully resolved, revealing the specific aurachin binding.
Antimicrobial resistance is an emerging global health threat necessitating the rapid development of novel antimicrobials. Remarkably, the vast majority of currently available antibiotics are natural products (NPs) isolated from streptomycetes, soil-dwelling bacteria of the genus Streptomyces. However, there is still a huge reservoir of streptomycetes NPs which remains pharmaceutically untapped and a compendium thereof could serve as a source of inspiration for the rational design of novel antibiotics. Initially released in 2012, StreptomeDB (http://www.pharmbioinf.uni-freiburg.de/streptomedb) is the first and only public online database that enables the interactive phylogenetic exploration of streptomycetes and their isolated or mutasynthesized NPs. In this third release, there are substantial improvements over its forerunners, especially in terms of data content. For instance, about 2500 unique NPs were newly annotated through manual curation of about 1300 PubMed-indexed articles, published in the last five years since the second release. To increase interoperability, StreptomeDB entries were hyperlinked to several spectral, (bio)chemical and chemical vendor databases, and also to a genome-based NP prediction server. Moreover, predicted pharmacokinetic and toxicity profiles were added. Lastly, some recent real-world use cases of StreptomeDB are highlighted, to illustrate its applicability in life sciences.
In recent years, the drug discovery paradigm has shifted toward compounds that covalently modify disease-associated target proteins, because they tend to possess high potency, selectivity, and duration of action. The rational design of novel targeted covalent inhibitors (TCIs) typically starts from resolved macromolecular structures of target proteins in their apo or holo forms. However, the existing TCI databases contain only a paucity of covalent protein–ligand (cP–L) complexes. Herein, we report CovPDB, the first database solely dedicated to high-resolution cocrystal structures of biologically relevant cP–L complexes, curated from the Protein Data Bank. For these curated complexes, the chemical structures and warheads of pre-reactive electrophilic ligands as well as the covalent bonding mechanisms to their target proteins were expertly manually annotated. Totally, CovPDB contains 733 proteins and 1,501 ligands, relating to 2,294 cP–L complexes, 93 reactive warheads, 14 targetable residues, and 21 covalent mechanisms. Users are provided with an intuitive and interactive web interface that allows multiple search and browsing options to explore the covalent interactome at a molecular level in order to develop novel TCIs. CovPDB is freely accessible at http://www.pharmbioinf.uni-freiburg.de/covpdb/ and its contents are available for download as flat files of various formats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.