Fungal cells change shape in response to environmental stimuli, and these morphogenic transitions drive pathogenesis and niche adaptation. For example, dimorphic fungi switch between yeast and hyphae in response to changing temperature. The basidiomycete Cryptococcus neoformans undergoes an unusual morphogenetic transition in the host lung from haploid yeast to large, highly polyploid cells termed Titan cells. Titan cells influence fungal interaction with host cells, including through increased drug resistance, altered cell size, and altered Pathogen Associated Molecular Pattern exposure. Despite the important role these cells play in pathogenesis, understanding the environmental stimuli that drive the morphological transition, and the molecular mechanisms underlying their unique biology, has been hampered by the lack of a reproducible in vitro induction system. Here we demonstrate reproducible in vitro Titan cell induction in response to environmental stimuli consistent with the host lung. In vitro Titan cells exhibit all the properties of in vivo generated Titan cells, the current gold standard, including altered capsule, cell wall, size, high mother cell ploidy, and aneuploid progeny. We identify the bacterial peptidoglycan subunit Muramyl Dipeptide as a serum compound associated with shift in cell size and ploidy, and demonstrate the capacity of bronchial lavage fluid and bacterial co-culture to induce Titanisation. Additionally, we demonstrate the capacity of our assay to identify established (cAMP/PKA) and previously undescribed (USV101) regulators of Titanisation in vitro. Finally, we investigate the Titanisation capacity of clinical isolates and their impact on disease outcome. Together, these findings provide new insight into the environmental stimuli and molecular mechanisms underlying the yeast-to-Titan transition and establish an essential in vitro model for the future characterization of this important morphotype.
The ability of proteins to sense membrane tension is pervasive in biology. A higher resolution structure of E. coli MscS, the channel of small conductance, identifies alkyl chains inside pockets formed by the transmembrane helices (TMs). Purified MscS contains E. coli lipids and fluorescence quenching demonstrates that phospholipid acyl chains exchange between bilayer and TM pockets. Molecular dynamics and biophysical analyses show that the volume of the pockets and thus the number of lipid acyl chain within them decreases upon channel opening. Phospholipids with one acyl chain per head group (lysolipids) displace normal phospholipids (two acyl chains) from MscS pockets and trigger channel opening. We propose the extent of acyl chain interdigitation in these pockets determines the conformation of MscS. Where interdigitation is perturbed by increased membrane tension or by lysolipids, the closed state becomes unstable and the channel gates.
Nitrous oxide reductase catalyses the reduction of nitrous oxide to dinitrogen at a unique tetranuclear copper site, called Cu(Z), which has a central inorganic sulphide ligand. Limited incubation with oxygen during the preparation of nitrous oxide reductase from Paracoccus pantotrophus results in changed redox properties of the catalytic centre by comparison with anaerobic preparations. While the anaerobically purified enzyme has a catalytic centre which performs a single electron step at a midpoint potential of E(m)=+60 mV versus the standard hydrogen electrode (n=1), the altered centre shows no redox change under similar experimental conditions. Spectroscopic properties of this 'redox fixed' centre are similar to spectra of the reduced 'redox active' form of CuZ, although the positions and intensities of a number of transitions are changed in the optical spectrum. These observations are interpreted in terms of two forms of the catalytic centre, called CuZ and CuZ*. The structural relationship between these forms is unclear. EPR and magnetic circular dichroism spectra suggest that the basic Cu4S structure is common to both. Curiously, steady-state activity of the aerobic enzyme preparation is slightly increased despite the fact the catalytic centre does not undergo detectable redox changes.
Mechanosensitive channels sense elevated membrane tension that arises from rapid water influx occurring when cells move from high to low osmolarity environments (hypoosmotic shock). These non-specific channels in the cytoplasmic membrane release osmotically-active solutes and ions. The two major mechanosensitive channels in Escherichia coli are MscL and MscS. Deletion of both proteins severely compromises survival of hypoosmotic shock. However, like many bacteria, E. coli cells possess other MscS-type genes (kefA, ybdG, ybiO, yjeP and ynaI). Two homologs, MscK (kefA) and YbdG, have been characterized as mechanosensitive channels that play minor roles in maintaining cell integrity. Additional channel openings are occasionally observed in patches derived from mutants lacking MscS, MscK and MscL. Due to their rare occurrence, little is known about these extra pressure-induced currents or their genetic origins. Here we complete the identification of the remaining E. coli mechanosensitive channels YnaI, YbiO and YjeP. The latter is the major component of the previously described MscM activity (~300 pS), while YnaI (~100 pS) and YbiO (~1000 pS) were previously unknown. Expression of native YbiO is NaCl-specific and RpoS-dependent. A Δ7 strain was created with all seven E. coli mechanosensitive channel genes deleted. High level expression of YnaI, YbiO or YjeP proteins from a multicopy plasmid in the Δ7 strain (MJFGH) leads to substantial protection against hypoosmotic shock. Purified homologs exhibit high molecular masses that are consistent with heptameric assemblies. This work reveals novel mechanosensitive channels and discusses the regulation of their expression in the context of possible additional functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.