Solar cells comprising methylammonium lead iodide perovskite (MAPI) are notorious for their sensitivity to moisture. We show that hydrated crystal phases are formed when MAPI is exposed to water vapour at room temperature and that these phase changes are fully reversed when the material is subsequently dried. The reversible formation of CH 3 NH 3 PbI 3 •H 2 O followed by (CH 3 NH 3 ) 4 PbI 6 •2H 2 O (upon long exposure times) was observed using time resolved XRD and ellipsometry of thin films prepared using 'solvent engineering', single crystals, and state of the art solar cells. In contrast to water vapour, the presence of liquid water results in the irreversible decomposition of MAPI to form PbI 2 . MAPI changes from dark brown to transparent on hydration; the precise optical constants of CH 3 NH 3 PbI 3 •H 2 O formed on single crystals were determined, with a bandgap at 3.1 eV. Using the single crystal optical constants and thin film ellipsometry measurements, the time dependent changes to MAPI films exposed to moisture were modelled. The results suggest that the mono-hydrate phase forms independently of the depth in the film suggesting rapid transport of water molecules along grain boundaries. Vapour phase hydration of an unencapsulated solar cell (initially J sc ≈ 19 mA cm -2 and V oc ≈ 1.05 V at 1 sun) resulted in more than a 90 % drop in short circuit photocurrent and around 200 mV loss in open circuit potential, but these losses were fully reversed after the cell was exposed to dry nitrogen for 6 hours. Hysteresis in the current-voltage characteristics was significantly increased after this dehydration, which may be related to changes in the defect density and morphology of MAPI following recrystallization from the hydrate. Based on our observations we suggest that irreversible decomposition of MAPI in the presence of water vapour only occurs significantly once a grain has been fully converted to the hydrate phase.
Methylammonium lead iodide perovskite can make high-efficiency solar cells, which also show an unexplained photocurrent hysteresis dependent on the device-poling history. Here we report quasielastic neutron scattering measurements showing that dipolar CH3NH3+ ions reorientate between the faces, corners or edges of the pseudo-cubic lattice cages in CH3NH3PbI3 crystals with a room temperature residence time of ∼14 ps. Free rotation, π-flips and ionic diffusion are ruled out within a 1–200-ps time window. Monte Carlo simulations of interacting CH3NH3+ dipoles realigning within a 3D lattice suggest that the scattering measurements may be explained by the stabilization of CH3NH3+ in either antiferroelectric or ferroelectric domains. Collective realignment of CH3NH3+ to screen a device's built-in potential could reduce photovoltaic performance. However, we estimate the timescale for a domain wall to traverse a typical device to be ∼0.1–1 ms, faster than most observed hysteresis.
We present Raman and terahertz absorbance spectra of methylammonium lead halide single crystals (MAPbX, X = I, Br, Cl) at temperatures between 80 and 370 K. These results show good agreement with density-functional-theory phonon calculations. Comparison of experimental spectra and calculated vibrational modes enables confident assignment of most of the vibrational features between 50 and 3500 cm. Reorientation of the methylammonium cations, unlocked in their cavities at the orthorhombic-to-tetragonal phase transition, plays a key role in shaping the vibrational spectra of the different compounds. Calculations show that these dynamic effects split Raman peaks and create more structure than predicted from the independent harmonic modes. This explains the presence of extra peaks in the experimental spectra that have been a source of confusion in earlier studies. We discuss singular features, in particular the torsional vibration of the C-N axis, which is the only molecular mode that is strongly influenced by the size of the lattice. From analysis of the spectral linewidths, we find that MAPbI shows exceptionally short phonon lifetimes, which can be linked to low lattice thermal conductivity. We show that optical rather than acoustic phonon scattering is likely to prevail at room temperature in these materials.
The hybrid halide perovskite CH 3 NH 3 PbI 3 exhibits a complex structural behaviour, with successive transitions between orthorhombic, tetragonal and cubic polymorphs at ca. 165 K and 327 K. Herein we report first-principles lattice dynamics (phonon spectrum) for each phase of CH 3 NH 3 PbI 3 . The equilibrium structures compare well to solutions of temperature-dependent powder neutron diffraction. By following the normal modes we calculate infrared and Raman intensities of the vibrations, and compare them to the measurement of a single crystal where the Raman laser is controlled to avoid degradation of the sample. Despite a clear separation in energy between low frequency modes associated with the inorganic (PbI -3 ) n network and high-frequency modes of the organic CH 3 NH + 3 cation, significant coupling between them is found, which emphasises the interplay between molecular orientation and the corner-sharing octahedral networks in the structural transformations. Soft modes are found at the boundary of the Brillouin zone of the cubic phase, consistent with displacive instabilities and anharmonicity involving tilting of the PbI 6 octahedra around room temperature.
The optical constants of methylammonium lead halide single crystals CH3NH3PbX3 (X = I, Br, Cl) are interpreted with high level ab initio calculations using the relativistic quasiparticle self-consistent GW approximation (QSGW). Good agreement between the optical constants derived from QSGW and those obtained from spectroscopic ellipsometry enables the assignment of the spectral features to their respective inter-band transitions. We show that the transition from the highest valence band (VB) to the lowest conduction band (CB) is responsible for almost all the optical response of MAPbI3 between 1.2 and 5.5 eV (with minor contributions from the second highest VB and the second lowest CB). The calculations indicate that the orientation of [CH3NH3](+) cations has a significant influence on the position of the bandgap suggesting that collective orientation of the organic moieties could result in significant local variations of the optical properties. The optical constants and energy band diagram of CH3NH3PbI3 are then used to simulate the contributions from different optical transitions to a typical transient absorption spectrum (TAS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.