Solar cells comprising methylammonium lead iodide perovskite (MAPI) are notorious for their sensitivity to moisture. We show that hydrated crystal phases are formed when MAPI is exposed to water vapour at room temperature and that these phase changes are fully reversed when the material is subsequently dried. The reversible formation of CH 3 NH 3 PbI 3 •H 2 O followed by (CH 3 NH 3 ) 4 PbI 6 •2H 2 O (upon long exposure times) was observed using time resolved XRD and ellipsometry of thin films prepared using 'solvent engineering', single crystals, and state of the art solar cells. In contrast to water vapour, the presence of liquid water results in the irreversible decomposition of MAPI to form PbI 2 . MAPI changes from dark brown to transparent on hydration; the precise optical constants of CH 3 NH 3 PbI 3 •H 2 O formed on single crystals were determined, with a bandgap at 3.1 eV. Using the single crystal optical constants and thin film ellipsometry measurements, the time dependent changes to MAPI films exposed to moisture were modelled. The results suggest that the mono-hydrate phase forms independently of the depth in the film suggesting rapid transport of water molecules along grain boundaries. Vapour phase hydration of an unencapsulated solar cell (initially J sc ≈ 19 mA cm -2 and V oc ≈ 1.05 V at 1 sun) resulted in more than a 90 % drop in short circuit photocurrent and around 200 mV loss in open circuit potential, but these losses were fully reversed after the cell was exposed to dry nitrogen for 6 hours. Hysteresis in the current-voltage characteristics was significantly increased after this dehydration, which may be related to changes in the defect density and morphology of MAPI following recrystallization from the hydrate. Based on our observations we suggest that irreversible decomposition of MAPI in the presence of water vapour only occurs significantly once a grain has been fully converted to the hydrate phase.
The optical constants of methylammonium lead halide single crystals CH3NH3PbX3 (X = I, Br, Cl) are interpreted with high level ab initio calculations using the relativistic quasiparticle self-consistent GW approximation (QSGW). Good agreement between the optical constants derived from QSGW and those obtained from spectroscopic ellipsometry enables the assignment of the spectral features to their respective inter-band transitions. We show that the transition from the highest valence band (VB) to the lowest conduction band (CB) is responsible for almost all the optical response of MAPbI3 between 1.2 and 5.5 eV (with minor contributions from the second highest VB and the second lowest CB). The calculations indicate that the orientation of [CH3NH3](+) cations has a significant influence on the position of the bandgap suggesting that collective orientation of the organic moieties could result in significant local variations of the optical properties. The optical constants and energy band diagram of CH3NH3PbI3 are then used to simulate the contributions from different optical transitions to a typical transient absorption spectrum (TAS).
The hybrid perovskite CH 3 NH 3 PbI 3 (MAPI) exhibits long minority-carrier lifetimes and diffusion lengths. We show that slow recombination originates from a spin-split indirect-gap. Large internal electric fields act on spin-orbit-coupled band extrema, shifting band-edges to inequivalent wavevectors, making the fundamental gap indirect. From a description of photoluminescence within the quasiparticle self-consistent GW approximation for MAPI, CdTe and GaAs, we predict carrier lifetime as a function of light intensity and temperature. At operating conditions we find radiative recombination in MAPI is reduced by a factor of more than 350 compared to direct gap behavior. The indirect gap is retained with dynamic disorder.
M. (2018). Effect of ladder diagrams on optical absorption spectra in a quasiparticle self-consistent GW framework. Physical Review Materials, 2(3), [034603] We present an approach to calculate the optical absorption spectra that combines the quasiparticle selfconsistent GW method [Phys. Rev. B, 76 165106 (2007)] for the electronic structure with the solution of the ladder approximation to the Bethe-Salpeter equation for the macroscopic dielectric function. The solution of the Bethe-Salpeter equation has been implemented within an all-electron framework, using a linear muffin-tin orbital basis set, with the contribution from the non-local self-energy to the transition dipole moments (in the optical limit) evaluated explicitly. This approach addresses those systems whose electronic structure is poorly described within the standard perturbative GW approaches with as a starting point density-functional theory calculations. The merits of this approach have been exemplified by calculating optical absorption spectra of a strongly correlated transition metal oxide, NiO, and a narrow gap semiconductor, Ge. In both cases, the calculated spectrum is in good agreement with the experiment. It is also shown that for systems whose electronic structure is well-described within the standard perturbative GW , such as Si, LiF and h-BN, the performance of the present approach is in general comparable to the standard GW plus Bethe-Salpeter equation. It is argued that both vertex corrections to the electronic screening and the electron-phonon interaction are responsible for the observed systematic overestimation of the fundamental bandgap and spectrum onset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.