This paper presents a methodology for the optimal preliminary design of electro-mechanical actuators. The main design drivers, design parameters and degrees of freedom that can be used for preliminary design and optimization of EMA are described. The different types of models used for model based design (estimation, simulation, evaluation and meta-model), and their associations are presented. The process preferred for its effectiveness in terms of flexibility and computational time is then described and illustrated with the example of a spoiler electromechanical actuator. The proposed approach, based on meta-models obtained using the surfaces response methods and scaling laws models, is used to explore the influence of anchorage points and transmission ratio on the different design constraints and the overall mass of the actuator.
In contrast to the current overall aircraft design techniques, the design of multirotor vehicles generally consists of skill-based selection procedures or is based on pure empirical approaches. The application of a systemic approach provides better design performance and the possibility to rapidly assess the effect of changes in the requirements. This paper proposes a generic and efficient sizing methodology for electric multirotor vehicles which allows to optimize a configuration for different missions and requirements. Starting from a set of algebraic equations based on scaling laws and similarity models, the optimization problem representing the sizing can be formulated in many manners. The proposed methodology shows a significant reduction in the number of function evaluations in the optimization process due to a thorough suppression of inequality constraints when compared to initial problem formulation. The results are validated by comparison to characteristics of existing multirotors. In addition, performance predictions of these configurations are performed for different flight scenarios and payloads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.